Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38077058

RESUMEN

Hematopoietic stem cell (HSC) transplantation using umbilical cord blood (UCB) is a potentially life-saving treatment for leukemia and bone marrow failure but is limited by the low number of HSCs in UCB. The loss of HSCs after ex vivo manipulation is also a major obstacle to gene editing for inherited blood disorders. HSCs require a low rate of translation to maintain their capacity for self-renewal, but hematopoietic cytokines used to expand HSCs stimulate protein synthesis and impair long-term self-renewal. We previously described cytokine-free conditions that maintain but do not expand human and mouse HSCs ex vivo. Here we performed a high throughput screen and identified translation inhibitors that allow ex vivo expansion of human HSCs while minimizing cytokine exposure. Transplantation assays show a ~5-fold expansion of long-term HSCs from UCB after one week of culture in low cytokine conditions. Single cell transcriptomic analysis demonstrates maintenance of HSCs expressing mediators of the unfolded protein stress response, further supporting the importance of regulated proteostasis in HSC maintenance and expansion. This expansion method maintains and expands human HSCs after CRISPR/Cas9 editing of the BCL11A+58 enhancer, overcoming a major obstacle to ex vivo gene correction for human hemoglobinopathies.

2.
PLoS Genet ; 15(5): e1008056, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31086367

RESUMEN

The six C. elegans vulval precursor cells (VPCs) are induced to form the 3°-3°-2°-1°-2°-3° pattern of cell fates with high fidelity. In response to EGF signal, the LET-60/Ras-LIN-45/Raf-MEK-2/MEK-MPK-1/ERK canonical MAP kinase cascade is necessary to induce 1° fate and synthesis of DSL ligands for the lateral Notch signal. In turn, LIN-12/Notch receptor is necessary to induce neighboring cells to become 2°. We previously showed that, in response to graded EGF signal, the modulatory LET-60/Ras-RGL-1/RalGEF-RAL-1/Ral signal promotes 2° fate in support of LIN-12. In this study, we identify two key differences between RGL-1 and RAL-1. First, deletion of RGL-1 confers no overt developmental defects, while previous studies showed RAL-1 to be essential for viability and fertility. From this observation, we hypothesize that the essential functions of RAL-1 are independent of upstream activation. Second, RGL-1 plays opposing and genetically separable roles in VPC fate patterning. RGL-1 promotes 2° fate via canonical GEF-dependent activation of RAL-1. Conversely, RGL-1 promotes 1° fate via a non-canonical GEF-independent activity. Our genetic epistasis experiments are consistent with RGL-1 functioning in the modulatory 1°-promoting AGE-1/PI3-Kinase-PDK-1-AKT-1 cascade. Additionally, animals lacking RGL-1 experience 15-fold higher rates of VPC patterning errors compared to the wild type. Yet VPC patterning in RGL-1 deletion mutants is not more sensitive to environmental perturbations. We propose that RGL-1 functions to orchestrate opposing 1°- and 2°-promoting modulatory cascades to decrease developmental stochasticity. We speculate that such switches are broadly conserved but mostly masked by paralog redundancy or essential functions.


Asunto(s)
Caenorhabditis elegans/genética , Factor de Crecimiento Epidérmico/genética , Regulación del Desarrollo de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Vulva/metabolismo , Animales , Tipificación del Cuerpo/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Epistasis Genética , Femenino , Fertilidad/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Vulva/citología , Vulva/crecimiento & desarrollo , Quinasas raf/genética , Quinasas raf/metabolismo , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
3.
Cell Rep ; 24(10): 2669-2681.e5, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30184501

RESUMEN

C. elegans vulval precursor cell (VPC) fates are patterned by an epidermal growth factor (EGF) gradient. High-dose EGF induces 1° VPC fate, and lower dose EGF contributes to 2° fate in support of LIN-12/Notch. We previously showed that the EGF 2°-promoting signal is mediated by LET-60/Ras switching effectors, from the canonical Raf-MEK-ERK mitogen-activated protein (MAP) kinase cascade that promotes 1° fate to the non-canonical RalGEF-Ral that promotes 2° fate. Of oncogenic Ras effectors, RalGEF-Ral is by far the least well understood. We use genetic analysis to identify an effector cascade downstream of C. elegans RAL-1/Ral, starting with an established Ral binding partner, Exo84 of the exocyst complex. Additionally, RAL-1 signals through GCK-2, a citron-N-terminal-homology-domain-containing MAP4 kinase, and PMK-1/p38 MAP kinase cascade to promote 2° fate. Our study delineates a Ral-dependent developmental signaling cascade in vivo, thus providing the mechanism by which lower EGF dose is transduced.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proteínas Asociadas a Microtúbulos/genética , Modelos Biológicos , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas de Unión al GTP ral/genética
4.
Nutr Res Pract ; 10(1): 33-41, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26865914

RESUMEN

BACKGROUND/OBJECTIVES: Diabetes mellitus (DM) is a major chronic disease which increases global health problems. Diabetes-induced renal damage is associated with inflammation and fibrosis. Alpha (AT) and gamma-tocopherols (GT) have shown antioxidant and anti-inflammatory effects in inflammation-mediated injuries. The primary aim of this study was to investigate effects of AT and GT supplementations on hyperglycemia induced acute kidney inflammation in alloxan induced diabetic mice with different levels of fasting blood glucose (FBG). MATERIALS/METHODS: Diabetes was induced by injection of alloxan monohydrate (150 mg/kg, i.p) in ICR mice (5.5-week-old, male) and mice were subdivided according to their FBG levels and treated with different diets for 2 weeks; CON: non-diabetic mice, m-DMC: diabetic control mice with mild FBG levels (250 mg/dl ≤ FBG ≤ 450 mg/dl), m-AT: m-DM mice fed AT supplementation (35 mg/kg diet), m-GT: m-DM mice with GT supplementation (35 mg/kg diet), s-DMC: diabetic control mice with severe FBG levels (450 mg/dl < FBG), s-AT: s-DM mice with AT supplementation, s-GT: s-DM mice with GT supplementation. RESULTS: Both AT and GT supplementations showed similar beneficial effects on NFκB associated inflammatory response (phosphorylated inhibitory kappa B-α, interleukin-1ß, C-reactive protein, monocyte chemotactic protein-1) and pre-fibrosis (tumor growth factor ß-1 and protein kinase C-II) as well as an antioxidant emzyme, heme oxygenase-1 (HO-1) in diabetic mice. On the other hands, AT and GT showed different beneficial effects on kidney weight, FBG, and oxidative stress associated makers (malondialdehyde, glutathione peroxidase, and catalase) except HO-1. In particular, GT significantly preserved kidney weight in m-DM and improved FBG levels in s-DM and malondialdehyde and catalase in m- and s-DM, while AT significantly attenuated FBG levels in m-DM and improved glutathione peroxidase in m- and s-DM. CONCLUSIONS: The results suggest that AT and GT with similarities and differences would be considered as beneficial nutrients to modulate hyperglycemia induced acute renal inflammation. Further research with careful approach is needed to confirm beneficial effects of tocopherols in diabetes with different FBG levels for clinical applications.

5.
Int J Mol Med ; 30(6): 1537-43, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23023114

RESUMEN

Metastasis of cancer cells is a major cause of death in cancer patients. The process of cancer metastasis includes the proliferation of primary cancer cells, local invasion, intravasation and cancer cell survival in blood flow, extravasation and attachment to secondary organs and metastatic growth in a new environment. In these mechanisms of cancer metastasis, CXC chemokine receptor 4 (CXCR4) and its ligand play an important role. Stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) is well known as a ligand of CXCR4, and macrophage migration-inhibitory factor (MIF) has recently become known as a ligand of CXCR4. In many types of cancers including breast, pancreatic and colorectal cancer (CRC), CXCR4/SDF-1α has been investigated in metastasis-related cancer behavior, which include cell proliferation, adhesion, migration and invasion. However, CXCR4/MIF has rarely been investigated in the metastatic behavior of colon cancer cells. In this report, the effect of SDF-1α or MIF was studied on cell cycle, cell proliferation, adhesion and migration of the CXCR4-expressing colon cancer cell line SW480. SDF-1α or MIF caused a decrease in the number of cells in G0/G1 phase and an increase in the numbers of cells in S and G2/M phases. In addition, SDF-1α or MIF caused an increase in cell proliferation, cell adhesion to fibronectin and migration. AMD3100, a CXCR4 antagonist, attenuated these effects, which included increased cell proliferation, adhesion and migration due to treatment of CXCR4-expressing colon cancer cells with SDF-1α or MIF. In conclusion, SDF-1α or MIF affects the metastasis-related behaviors of CXCR4-expressing colon cancer cells.


Asunto(s)
Quimiocina CXCL12/fisiología , Neoplasias del Colon/patología , Factores Inhibidores de la Migración de Macrófagos/fisiología , Receptores CXCR4/metabolismo , Adhesión Celular , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Expresión Génica , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA