Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
FASEB J ; 36(12): e22653, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36374251

RESUMEN

Recombinant adeno-associated viruses (rAAVs) are useful vectors for expressing genes of interest in vivo because of their low immunogenicity and long-term gene expression. Various mutations have been introduced in recent years and have enabled high-efficacy, stabilized, and organ-oriented transduction. Our purpose for using rAAV is to express our target gene in the mouse lung to investigate pulmonary artery hypertension. We constructed a self-complementary AAV having mutant capsids with the ESGHGYF insert, which directs the vectors to lung endothelial cells. However, when this mutant virus was purified from the producing cells by the conventional method using an ultracentrifuge, it resulted in a low yield. In addition, the purification method using an ultracentrifuge is tedious and labor-intensive. Therefore, we aimed to develop a simple, high-quality method for obtaining enough lung-targeted rAAV. First, we modified amino acids (T491V and Y730F) of the capsid to stabilize the rAAV from degradation, and we optimized culture conditions. Next, we noticed that many rAAVs were released from the cells into the culture medium. We, therefore, improved our purification method by purifying from the culture medium without the ultracentrifugation step. Purification without ultracentrifugation had the problem that impurities were mixed in, causing inflammation. However, by performing PEG precipitation and chloroform extraction twice, we were able to purify rAAV that caused only as little inflammation as that obtained by the ultracentrifuge method. Sufficient rAAV was obtained and can now be administered to a rat as well as mice from a single dish: 1.50 × 1013 ± 3.58 × 1012 vector genome from one φ150 mm dish (mean ± SEM).


Asunto(s)
Dependovirus , Vectores Genéticos , Ratones , Ratas , Animales , Dependovirus/genética , Vectores Genéticos/genética , Células Endoteliales , Ultracentrifugación , Pulmón , Inflamación
2.
Br J Pharmacol ; 179(20): 4778-4791, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35763220

RESUMEN

BACKGROUND AND PURPOSE: The cysteine674 (C674) thiol of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 is easily and irreversibly oxidized under atherosclerotic conditions. However, the contribution of the C674 thiol redox status in the development of atherosclerosis remains unclear. Our goal was to elucidate the possible mechanism involved. EXPERIMENTAL APPROACH: Heterozygous SERCA2 C674S knock-in mice in which half of the C674 was substituted by serine (S674) were used to mimic the removal of the reactive C674 thiol, which occurs under pathological conditions. Bone marrow-derived macrophages (BMDMs) and cardiac endothelial cells (ECs) were used for intracellular Ca2+ , macrophage adhesion, and protein expression analysis. The whole aorta and aortic root were isolated for histological analysis. KEY RESULTS: Cell culture studies suggest the partial substitution of SERCA2 C674 increased intracellular Ca2+ levels and induced ER stress in both BMDMs and ECs. The release of proinflammatory factors and macrophage adhesion increased in SKI BMDMs. In ECs, overexpression of S674 induced endothelial inflammation and promoted macrophage recruitment. SKI mice developed more severe atherosclerotic plaque and macrophage accumulation. Additionally, 4-phenyl butyric acid, an ER stress inhibitor, suppressed ER stress and inflammatory responses in BMDMs and ECs, and alleviated atherosclerosis in SKI mice. CONCLUSIONS AND IMPLICATIONS: The substitution of SERCA2 C674 thiol accelerates the development of atherosclerosis by inducing ER stress and inflammation. Our findings highlight the importance of SERCA2 C674 redox state in the context of atherosclerosis and open up a novel therapeutic strategy to combat atherosclerosis.


Asunto(s)
Aterosclerosis , Estrés del Retículo Endoplásmico , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Animales , Aterosclerosis/metabolismo , Ácido Butírico , Cisteína/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Ratones , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Serina , Compuestos de Sulfhidrilo/metabolismo
3.
Free Radic Biol Med ; 156: 45-56, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32553752

RESUMEN

The nuclear receptor peroxisome proliferator-activated receptor (PPAR)γ has been implicated in the pathogenesis of various human diseases including fatty liver. Although nuclear translocation of PPARγ plays an important role in PPARγ signaling, details of the translocation mechanisms have not been elucidated. Here we demonstrate that PPARγ2 translocates to the nucleus and activates signal transduction through H2O2-dependent formation of a PPARγ2 and transportin (Tnpo)1 complex via redox-sensitive disulfide bonds between cysteine (Cys)176 and Cys180 of the former and Cys512 of the latter. Using hepatocyte cultures and mouse models, we show that cytosolic H2O2/Tnpo1-dependent nuclear translocation enhances the amount of DNA-bound PPARγ and downstream signaling, leading to triglyceride accumulation in hepatocytes and liver. These findings expand our understanding of the mechanism underlying the nuclear translocation of PPARγ, and suggest that the PPARγ and Tnpo1 complex and surrounding redox environment are potential therapeutic targets in the treatment of PPARγ-related diseases.


Asunto(s)
Peróxido de Hidrógeno , PPAR gamma , Núcleo Celular , Hígado , PPAR gamma/genética , Transducción de Señal
4.
J Mol Cell Cardiol ; 76: 275-82, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25260714

RESUMEN

Ischemia is a complex phenomenon modulated by the concerted action of several cell types. We have identified that sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase 2 (SERCA 2) cysteine 674 (C674) S-glutathiolation is essential for ischemic angiogenesis, vascular endothelial growth factor (VEGF)-mediated endothelial cell (EC) migration and network formation. A heterozygote SERCA 2 C674S knockin (SKI) mouse shows impaired ischemic blood flow recovery after femoral artery ligation, and its ECs show depleted endoplasmic reticulum (ER) Ca(2+) stores and impaired angiogenic behavior. Here we studied the role of SERCA 2 C674 in the interaction between ECs and macrophages in the context of ischemia and discovered the involvement of the ER stress response protein, ER oxidoreductin-1α (ERO1). In wild type (WT) mice, expression of ERO1 was increased in the ischemic hind limb in vivo, as well as in ECs and macrophages exposed to hypoxia in vitro. The increase in ERO1 to ischemia/hypoxia was less in SKI mice. In WT ECs, both vascular cell adhesion molecule 1 (VCAM1) expression and bone marrow-derived macrophage adhesion to ECs were increased by hypoxia, and both were attenuated in SKI ECs. In WT ECs, ERO1 siRNA blocked hypoxia-induced VCAM1 expression and macrophage adhesion. In WT macrophages, hypoxia also stimulated both ERO1 and VEGF expression, and both were less in SKI macrophages. Compared with conditioned media of hypoxic SKI macrophages, conditioned media from WT macrophages had a greater effect on EC angiogenic behavior, and were blocked by VEGF neutralizing antibody. Taken together, under hypoxic conditions, SERCA 2 C674 and ERO1 enable increased VCAM1 expression and macrophage adhesion to ECs, as well as macrophage VEGF production that, in turn, promote angiogenesis. This study highlights the hitherto unrecognized interaction of two ER proteins, SERCA 2 C674 and ERO1, which mediate the EC and macrophage angiogenic response to ischemia/hypoxia.


Asunto(s)
Células Endoteliales/fisiología , Macrófagos/fisiología , Neovascularización Fisiológica , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología , Animales , Movimiento Celular , Proliferación Celular , Cisteína/metabolismo , Endotelio Vascular/patología , Glicoproteínas/metabolismo , Miembro Posterior/irrigación sanguínea , Isquemia/metabolismo , Isquemia/fisiopatología , Ratones Endogámicos C57BL , Ratones Transgénicos , Microvasos/patología , Oxidorreductasas , Factor A de Crecimiento Endotelial Vascular/biosíntesis
5.
J Am Heart Assoc ; 2(4): e000361, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23954796

RESUMEN

BACKGROUND: Insulin signaling comprises 2 major cascades: the insulin receptor substrate/phosphatidylinositol 3'-kinase/protein kinase B and Ras/Raf/mitogen-activated protein kinase/kinase/ERK pathways. While many studies on the tissue-specific effects of the insulin receptor substrate/phosphatidylinositol 3' -kinase/protein kinase B pathway have been conducted, the role of the other cascade in tissue-specific insulin resistance has not been investigated. High glucose/fatty acid toxicity, inflammation, and oxidative stress, all of which are associated with insulin resistance, can activate ERK. The liver plays a central role in metabolism, and hepatosteatosis is associated with vascular diseases. The aim of study was to elucidate the role of hepatic ERK2 in hepatosteatosis, metabolic remodeling, and endothelial dysfunction. METHODS AND RESULTS: We created liver-specific ERK2 knockout mice and fed them with a high-fat/high-sucrose diet for 20 weeks. The high-fat/high-sucrose diet-fed liver-specific ERK2 knockout mice exhibited a marked deterioration in hepatosteatosis and metabolic remodeling represented by impairment of glucose tolerance and decreased insulin sensitivity without changes in body weight, blood pressure, and serum cholesterol/triglyceride levels. In the mice, endoplasmic reticulum stress was induced together with decreased mRNA and protein expressions of hepatic sarco/endoplasmic reticulum Ca(2+)-ATPase 2. In a hepatoma cell line, inhibition of ERK activation- induced endoplasmic reticulum stress only in the presence of palmitate. Vascular reactive oxygen species were elevated with upregulation of nicotinamide adenine dinucleotide phosphate oxidase1 (Nox1) and Nox4 and decreased phosphorylation of endothelial nitric oxide synthase, which resulted in the remarkable endothelial dysfunction in high-fat/high-sucrose diet-fed liver-specific ERK2 knockout mice. CONCLUSIONS: Hepatic ERK2 suppresses endoplasmic reticulum stress and hepatosteatosis in vivo, which results in protection from vascular oxidative stress and endothelial dysfunction. These findings demonstrate a novel role of hepatic ERK2 in obese-induced insulin resistance in the protection from hepatovascular metabolic remodeling and vascular diseases.


Asunto(s)
Estrés del Retículo Endoplásmico , Endotelio Vascular/enzimología , Hígado Graso/enzimología , Intolerancia a la Glucosa/enzimología , Hígado/enzimología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Estrés Oxidativo , Enfermedades Vasculares/enzimología , Animales , Glucemia/metabolismo , Línea Celular Tumoral , Dieta Alta en Grasa , Sacarosa en la Dieta , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endotelio Vascular/fisiopatología , Ácidos Grasos no Esterificados/sangre , Hígado Graso/genética , Hígado Graso/patología , Hígado Graso/prevención & control , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/fisiopatología , Insulina/sangre , Hígado/efectos de los fármacos , Hígado/patología , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/deficiencia , Proteína Quinasa 1 Activada por Mitógenos/genética , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Especies Reactivas de Oxígeno/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal , Enfermedades Vasculares/genética , Enfermedades Vasculares/fisiopatología , Enfermedades Vasculares/prevención & control , Vasodilatación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA