Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Curr Opin Cell Biol ; 62: 86-95, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31739264

RESUMEN

Microtubules control cell architecture by serving as a scaffold for intracellular transport, signaling, and organelle positioning. Microtubules are intrinsically polarized, and their orientation, density, and post-translational modifications both respond and contribute to cell polarity. Animal cells that can rapidly reorient their polarity axis, such as fibroblasts, immune cells, and cancer cells, contain radially organized microtubule arrays anchored at the centrosome and the Golgi apparatus, whereas stably polarized cells often acquire non-centrosomal microtubule networks attached to the cell cortex, nucleus, or other structures. Microtubule density, longevity, and post-translational modifications strongly depend on the dynamics of their plus ends. Factors controlling microtubule plus-end dynamics are often part of cortical assemblies that integrate cytoskeletal organization, cell adhesion, and secretion and are subject to microtubule-dependent feedback regulation. Finally, microtubules can mechanically contribute to cell asymmetry by promoting cell elongation, a property that might be important for cells with dense microtubule arrays growing in soft environments.


Asunto(s)
Polaridad Celular/fisiología , Microtúbulos/metabolismo , Animales , Humanos
2.
Anal Biochem ; 558: 19-27, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30075102

RESUMEN

The myosin family of motor proteins is an attractive target of therapeutic small-molecule protein inhibitors and modulators. Milligrams of protein quantities are required to conduct proper biophysical and biochemical studies to understand myosin functions. Myosin protein expression and purification represent a critical starting point towards this goal. Established utilization of Dictyostelium discoideum, Drosophila melanogaster, insect and mouse cells for myosin expression and purification is limited, cost, labor and time inefficient particularly for (full-length) human myosins. Here we are presenting detailed protocols for production of several difficult-to-purify recombinant human myosins in efficient quantities up to 1 mg of protein per liter of cell culture. This is the first time that myosins have been purified in large scales from suspension adapted transiently and stably expressing human cells. The method is also useful for expressing other human proteins in quantities sufficient to perform extensive biochemical and biophysical characterization.


Asunto(s)
Miosinas/aislamiento & purificación , Miosinas/metabolismo , Animales , Técnicas de Cultivo de Célula , Dictyostelium/metabolismo , Células HEK293 , Humanos , Ratones , Miosinas/genética , Regiones Promotoras Genéticas , Transfección
3.
Sci Rep ; 7(1): 15060, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118380

RESUMEN

Carcinomas constitute over 80% of all human cancer types with no effective therapy for metastatic disease. Here, we demonstrate, for the first time, the efficacy of therapeutic-ultrasound (TUS) to deliver a human tumor suppressor gene, hSef-b, to prostate tumors in vivo. Sef is downregulated in various human carcinomas, in a manner correlating with tumor aggressiveness. In vitro, hSef-b inhibited proliferation of TRAMP C2 cells and attenuated activation of ERK/MAPK and the master transcription factor NF-κB in response to FGF and IL-1/TNF, respectively. In vivo, transfection efficiency of a plasmid co-expressing hSef-b/eGFP into TRAMP C2 tumors was 14.7 ± 2.5% following a single TUS application. Repeated TUS treatments with hSef-b plasmid, significantly suppressed prostate tumor growth (60%) through inhibition of cell proliferation (60%), and reduction in blood vessel density (56%). In accordance, repeated TUS-treatments with hSef-b significantly inhibited in vivo expression of FGF2 and MMP-9. FGF2 is a known mitogen, and both FGF2/MMP-9 are proangiogenic factors. Taken together our results strongly suggest that hSef-b acts in a cell autonomous as well as non-cell autonomous manner. Moreover, the study demonstrates the efficacy of non-viral TUS-based hSef-b gene delivery approach for the treatment of prostate cancer tumors, and possibly other carcinomas where Sef is downregulated.


Asunto(s)
Técnicas de Transferencia de Gen , Neovascularización Patológica/prevención & control , Neoplasias de la Próstata/terapia , Receptores de Interleucina/genética , Carga Tumoral/genética , Terapia por Ultrasonido/métodos , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones Endogámicos C57BL , Neovascularización Patológica/genética , Neoplasias de la Próstata/irrigación sanguínea , Neoplasias de la Próstata/genética , Receptores de Interleucina/metabolismo
4.
Sci Rep ; 7(1): 11577, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28912530

RESUMEN

The role of the actin cytoskeleton in relation to mitochondria function and dynamics is only recently beginning to be recognized. Myo19 is an actin-based motor that is bound to the outer mitochondrial membrane and promotes the localization of mitochondria to filopodia in response to glucose starvation. However, how glucose starvation induces mitochondria localization to filopodia, what are the dynamics of this process and which enzymatic adaptation allows the translocation of mitochondria to filopodia are not known. Here we show that reactive oxygen species (ROS) mimic and mediate the glucose starvation induced phenotype. In addition, time-lapse fluorescent microscopy reveals that ROS-induced Myo19 motility is a highly dynamic process which is coupled to filopodia elongation and retraction. Interestingly, Myo19 motility is inhibited by back-to-consensus-mutation of a unique residue of class XIX myosins in the motor domain. Kinetic analysis of the purified mutant Myo19 motor domain reveals that the duty ratio (time spent strongly bound to actin) is highly compromised in comparison to that of the WT motor domain, indicating that Myo19 unique motor properties are necessary to propel mitochondria to filopodia tips. In summary, our study demonstrates the contribution of actin-based motility to the mitochondrial localization to filopodia by specific cellular cues.


Asunto(s)
Mitocondrias/metabolismo , Miosinas/metabolismo , Seudópodos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triptófano/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Glucosa/metabolismo , Humanos , Cinética , Modelos Moleculares , Conformación Molecular , Mutación , Miosinas/química , Miosinas/genética , Nucleótidos/metabolismo , Unión Proteica , Transporte de Proteínas , Relación Estructura-Actividad , Triptófano/química
5.
J Cell Sci ; 129(3): 543-56, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26659663

RESUMEN

Mitochondria respond to environmental cues and stress conditions. Additionally, the disruption of the mitochondrial network dynamics and its distribution is implicated in a variety of neurodegenerative diseases. Here, we reveal a new function for Myo19 in mitochondrial dynamics and localization during the cellular response to glucose starvation. Ectopically expressed Myo19 localized with mitochondria to the tips of starvation-induced filopodia. Corollary to this, RNA interference (RNAi)-mediated knockdown of Myo19 diminished filopodia formation without evident effects on the mitochondrial network. We analyzed the Myo19-mitochondria interaction, and demonstrated that Myo19 is uniquely anchored to the outer mitochondrial membrane (OMM) through a 30-45-residue motif, indicating that Myo19 is a stably attached OMM molecular motor. Our work reveals a new function for Myo19 in mitochondrial positioning under stress.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Membranas Mitocondriales/metabolismo , Proteínas Motoras Moleculares/metabolismo , Miosinas/metabolismo , Seudópodos/metabolismo , Inanición/metabolismo , Línea Celular , Células HEK293 , Humanos , Interferencia de ARN/fisiología
6.
Dev Cell ; 23(3): 611-23, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22975329

RESUMEN

The NF-κB transcription factor controls diverse biological processes. According to the classical model, NF-κB is retained in the cytoplasm of resting cells via binding to inhibitory, IκB proteins and translocates into the nucleus upon their ligand-induced degradation. Here we reveal that Sef, a known tumor suppressor and inhibitor of growth factor signaling, is a spatial regulator of NF-κB. Sef expression is regulated by the proinflammatory cytokines tumor necrosis factor and interleukin-1, and Sef specifically inhibits "classical" NF-κB (p50:p65) activation by these ligands. Like IκBs, Sef sequesters NF-κB in the cytoplasm of resting cells. However, contrary to IκBs, Sef continues to constrain NF-κB nuclear entry upon ligand stimulation. Accordingly, endogenous Sef knockdown markedly enhances stimulus-induced NF-κB nuclear translocation and consequent activity. This study establishes Sef as a feedback antagonist of proinflammatory cytokines and highlights its potential to regulate the crosstalk between proinflammatory cytokine receptors and receptor tyrosine kinases.


Asunto(s)
Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Citoplasma/metabolismo , Inflamación , FN-kappa B/metabolismo , Receptores de Interleucina/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Ratones , FN-kappa B/antagonistas & inhibidores , Células 3T3 NIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA