Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Plant Pathol ; 22(9): 1092-1108, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245085

RESUMEN

The accumulation of reactive oxygen species (ROS) is a widespread defence mechanism in higher plants against pathogen attack and sometimes is the cause of cell death that facilitates attack by necrotrophic pathogens. Plant pathogens use superoxide dismutase (SOD) to scavenge ROS derived from their own metabolism or generated from host defence. The significance and roles of SODs in the vascular plant pathogen Verticillium dahliae are unclear. Our previous study showed a significant upregulation of Cu/Zn-SOD1 (VdSOD1) in cotton tissues following V. dahliae infection, suggesting that it may play a role in pathogen virulence. Here, we constructed VdSOD1 deletion mutants (ΔSOD1) and investigated its function in scavenging ROS and promoting pathogen virulence. ΔSOD1 had normal growth and conidiation but exhibited significantly higher sensitivity to the intracellular ROS generator menadione. Despite lacking a signal peptide, assays in vitro by western blot and in vivo by confocal microscopy revealed that secretion of VdSOD1 is dependent on the Golgi reassembly stacking protein (VdGRASP). Both menadione-treated ΔSOD1 and cotton roots infected with ΔSOD1 accumulated more O2- and less H2 O2 than with the wildtype strain. The absence of a functioning VdSOD1 significantly reduced symptom severity and pathogen colonization in both cotton and Nicotiana benthamiana. VdSOD1 is nonessential for growth or viability of V. dahliae, but is involved in the detoxification of both intracellular ROS and host-generated extracellular ROS, and contributes significantly to virulence in V. dahliae.


Asunto(s)
Gossypium/microbiología , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa-1/genética , Verticillium , Verticillium/enzimología , Verticillium/patogenicidad , Virulencia , Zinc
2.
J Proteomics ; 207: 103449, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31323424

RESUMEN

Verticillium dahliae colonizes vascular tissue and causes vascular discoloration in susceptible hosts. Two well-defined races exist in V. dahliae populations from tomato and lettuce. In this study, proteins and metabolites obtained from stems of race 1-incompatible (Beefsteak) and -compatible (Early Pak) tomato cultivars were characterized. A total of 814 and 584 proteins in Beefsteak; and 456 and 637 proteins in Early Pak were identified in stem extracts of plants inoculated with races 1 and 2, respectively. A significant number of defense-related proteins were expressed in each tomato-V. dahliae interaction, as anticipated. However, phenylalanine ammonia-lyase (PAL), an important defense-associated enzyme of the phenylpropanoid pathway, in addition to remorin 1, NAD-dependent epimerase/dehydratase, and polyphenol oxidase were uniquely expressed in the incompatible interaction. Compared with the uninoculated control, significant overexpression of gene ontology terms associated with lignin biosynthesis, phenylpropanoid pathway and carbohydrate methylation were identified exclusively in the incompatible interaction. Phenolic compounds known to be involved in plant defense mechanisms were at higher levels in the incompatible relative to the compatible interactions. Based on our findings, PAL and enzymes involved defense-related secondary metabolism and the strengthening of cell walls is likely critical to confer resistance to race 1 of V. dahliae in tomato. SIGNIFICANCE: Verticillium dahliae, a soilborne fungal pathogen and a widely distributed fungal pathogen, colonizes vascular tissue and causes vascular discoloration in roots and stems, leaf wilting, and death of susceptible plant hosts. It causes billions of dollars in annual crop losses all over the world. The study focused on the proteomic and metabalomic of V. dahliae interactions (incompatible with Beefsteak and compatible with Early Pak tomato cultivars). Based on our findings, PAL and enzymes involved defense-related secondary metabolism and the strengthening of cell walls is likely critical to confer resistance to race 1 of V. dahliae in tomato.


Asunto(s)
Metaboloma , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Solanum lycopersicum , Verticillium/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología
3.
Front Plant Sci ; 9: 1266, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30254650

RESUMEN

Cysteine-rich receptor-like kinases (CRKs) are a large subfamily of plant receptor-like kinases that play a critical role in disease resistance in plants. However, knowledge about the CRK gene family in cotton and its function against Verticillium wilt (VW), a destructive disease caused by Verticillium dahliae that significantly reduces cotton yields is lacking. In this study, we identified a total of 30 typical CRKs in a Gossypium barbadense genome (GbCRKs). Eleven of these (>30%) are located on the A06 and D06 chromosomes, and 18 consisted of 9 paralogous pairs encoded in the A and D subgenomes. Phylogenetic analysis showed that the GbCRKs could be classified into four broad groups, the expansion of which has probably been driven by tandem duplication. Gene expression profiling of the GbCRKs in resistant and susceptible cotton cultivars revealed that a phylogenetic cluster of nine of the GbCRK genes were up-regulated in response to V. dahliae infection. Virus-induced gene silencing of each of these nine GbCRKs independently revealed that the silencing of GbCRK18 was sufficient to compromise VW resistance in G. barbadense. GbCRK18 expression could be induced by V. dahliae infection or jasmonic acid, and displayed plasma membrane localization. Therefore, our expression analyses indicated that the CRK gene family is differentially regulated in response to Verticillium infection, while gene silencing experiments revealed that GbCRK18 in particular confers VW resistance in G. barbadense.

4.
Mol Plant Microbe Interact ; 31(2): 260-273, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29068240

RESUMEN

Cutinases have been implicated as important enzymes during the process of fungal infection of aerial plant organs. The function of cutinases in the disease cycle of fungal pathogens that invade plants through the roots has been less studied. Here, functional analysis of 13 cutinase (carbohydrate esterase family 5 domain-containing) genes (VdCUTs) in the highly virulent vascular wilt pathogen Verticillium dahliae Vd991 was performed. Significant sequence divergence in cutinase family members was observed in the genome of V. dahliae Vd991. Functional analyses demonstrated that only VdCUT11, as purified protein, induced cell death and triggered defense responses in Nicotiana benthamiana, cotton, and tomato plants. Virus-induced gene silencing showed that VdCUT11 induces plant defense responses in Nicotiana benthamania in a BAK1 and SOBIR-dependent manner. Furthermore, coinfiltration assays revealed that the carbohydrate-binding module family 1 protein (VdCBM1) suppressed VdCUT11-induced cell death and other defense responses in N. benthamiana. Targeted deletion of VdCUT11 in V. dahliae significantly compromised virulence on cotton plants. The cutinase VdCUT11 is an important secreted enzyme and virulence factor that elicits plant defense responses in the absence of VdCBM1.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Gossypium/inmunología , Gossypium/microbiología , Verticillium/enzimología , Secuencia de Aminoácidos , Regulación Fúngica de la Expresión Génica , Filogenia , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Nicotiana , Verticillium/metabolismo , Verticillium/patogenicidad , Virulencia
5.
Environ Microbiol ; 19(5): 1914-1932, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28205292

RESUMEN

Glycoside hydrolase 12 (GH12) proteins act as virulence factors and pathogen-associated molecular patterns (PAMPs) in oomycetes. However, the pathogenic mechanisms of fungal GH12 proteins have not been characterized. In this study, we demonstrated that two of the six GH12 proteins produced by the fungus Verticillium dahliae Vd991, VdEG1 and VdEG3 acted as PAMPs to trigger cell death and PAMP-triggered immunity (PTI) independent of their enzymatic activity in Nicotiana benthamiana. A 63-amino-acid peptide of VdEG3 was sufficient for cell death-inducing activity, but this was not the case for the corresponding peptide of VdEG1. Further study indicated that VdEG1 and VdEG3 trigger PTI in different ways: BAK1 is required for VdEG1- and VdEG3-triggered immunity, while SOBIR1 is specifically required for VdEG1-triggered immunity in N. benthamiana. Unlike oomycetes, which employ RXLR effectors to suppress host immunity, a carbohydrate-binding module family 1 (CBM1) protein domain suppressed GH12 protein-induced cell death. Furthermore, during infection of N. benthamiana and cotton, VdEG1 and VdEG3 acted as PAMPs and virulence factors, respectively indicative of host-dependent molecular functions. These results suggest that VdEG1 and VdEG3 associate differently with BAK1 and SOBIR1 receptor-like kinases to trigger immunity in N. benthamiana, and together with CBM1-containing proteins manipulate plant immunity.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Gossypium/microbiología , Nicotiana/microbiología , Inmunidad de la Planta/fisiología , Receptores de Superficie Celular/metabolismo , Verticillium/patogenicidad , Muerte Celular , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Verticillium/metabolismo , Factores de Virulencia/metabolismo
7.
PLoS One ; 10(9): e0137689, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26367271

RESUMEN

Ambrosia symbiosis is an obligate, farming-like mutualism between wood-boring beetles and fungi. It evolved at least 11 times and includes many notorious invasive pests. All ambrosia beetles studied to date cultivate ascomycotan fungi: early colonizers of recently killed trees with poor wood digestion. Beetles in the widespread genus Ambrosiodmus, however, colonize decayed wood. We characterized the mycosymbionts of three Ambrosiodmus species using quantitative culturing, high-throughput metabarcoding, and histology. We determined the fungi to be within the Polyporales, closely related to Flavodon flavus. Culture-independent sequencing of Ambrosiodmus minor mycangia revealed a single operational taxonomic unit identical to the sequences from the cultured Flavodon. Histological sectioning confirmed that Ambrosiodmus possessed preoral mycangia containing dimitic hyphae similar to cultured F. cf. flavus. The Ambrosiodmus-Flavodon symbiosis is unique in several aspects: it is the first reported association between an ambrosia beetle and a basidiomycotan fungus; the mycosymbiont grows as hyphae in the mycangia, not as budding pseudo-mycelium; and the mycosymbiont is a white-rot saprophyte rather than an early colonizer: a previously undocumented wood borer niche. Few fungi are capable of turning rotten wood into complete animal nutrition. Several thousand beetle-fungus symbioses remain unstudied and promise unknown and unexpected mycological diversity and enzymatic innovations.


Asunto(s)
Secuencia de Bases , Escarabajos/microbiología , Simbiosis/fisiología , Animales , Hifa/clasificación , Hifa/genética , Hifa/crecimiento & desarrollo , Hifa/aislamiento & purificación , Datos de Secuencia Molecular , Polyporales/clasificación , Polyporales/genética , Polyporales/crecimiento & desarrollo , Polyporales/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA