Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mar Pollut Bull ; 185(Pt A): 114262, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36283152

RESUMEN

In this study, the microplastics (MPs) abundance, characteristics and their variations across three popular beaches of highly populated and largest megacity of India were documented using clams as an indicator species. The abundance of MPs in clams was 77.39 MPs items/g in soft tissue parts and 198.82 items/individual, while in coastal waters and sediments the abundance was 537.5 ± 95 items/L and 10,568.3 ± 3053.3 items/kg respectively. The observed higher microplastic diversity integrated (MDII) indicates numerous sources contributing to microplastics pollution and higher microplastic index (MPI) indicates greater bioavailability of MPs to clams. The bulk of the microplastics recovered from clams (55.78 %), coastal sediments (52.27 %) and coastal sea waters (54 %) belong to the <100 µm size range, and were identified as LDPE and polypropylene, polyamide and polystyrene. This investigation tried to validate the potential trophic transfer concerns associated with clam intake to both human health and marine ecology.


Asunto(s)
Bivalvos , Contaminantes Químicos del Agua , Animales , Humanos , Microplásticos , Plásticos , Sedimentos Geológicos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
2.
Bioorg Med Chem ; 58: 116673, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189561

RESUMEN

To identify potential new reagents and biomarkers for early lung cancer detection we combined the use of a novel preclinical isogenic model of human lung epithelial cells comparing non-malignant cells with those transformed to full malignancy using defined oncogenic changes and our on-bead two color (red and green stained cells) (OBTC) peptoid combinatorial screening methodology. The preclinical model used normal parent lung epithelial cells (HBEC3-KT, labeled with green dye) and isogenic fully malignant transformed derivatives (labeled with a red dye) via the sequential introduction of key genetic alterations of p53 knockdown, oncogenic KRAS and overexpression of cMYC (HBEC3p53, KRAS, cMYC). Using the unbiased OBTC screening approach, we tested 100,000 different peptoids and identified only one (named JM3A) that bound to the surface of the HBEC3p53, KRAS, cMYC cells (red cells) but not HBEC3-KT cells (green cells). Using the JM3A peptoid and proteomics, we identified the protein bound as vimentin using multiple validation approaches. These all confirmed the cell surface expression of vimentin (CSV) on transformed (HBEC3p53, KRAS, cMYC) but not on untransformed (HBEC3-KT) cells. JM3A coupled with fluorophores was able to detect and stain cell surface vimentin on very early stage lung cancers but not normal lung epithelial cells in a fashion comparable to that using anti-vimentin antibodies. We conclude: using a combined isogenic preclinical model of lung cancer and two color screening of a large peptoid library, we have identified differential expression of cell surface vimentin (CSV) after malignant transformation of lung epithelial cells, and developed a new peptoid reagent (JM3A) for detection of CSV which works well in staining of early stage NSCLCs. This new, highly specific, easy to prepare, CSV detecting JM3A peptoid provides an important new reagent for identifying cancer cells in early stage tumors as well as a resource for detection and isolating of CSV expressing circulating tumor cells.


Asunto(s)
Células Epiteliales/metabolismo , Neoplasias Pulmonares/metabolismo , Peptoides/metabolismo , Vimentina/genética , Línea Celular , Humanos , Neoplasias Pulmonares/patología , Estructura Molecular , Peptoides/química , Vimentina/metabolismo
3.
Bioorg Chem ; 116: 105340, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34530236

RESUMEN

Cancers are highly heterogeneous and typically contain a small subset of drug-resisting cells called tumor initiating cells or cancer stem cells (CSCs). CSCs can self-renew, divide asymmetrically, and often cause tumor invasion and metastasis. Therefore, treatments specifically targeting CSCs are critical to improve patient survival. Recently, we identified a highly specific peptidomimetic (peptoid - PCS2) that selectively binds to the CSC subpopulation of lung cancer over the remaining cancer cells (non-CSCs). Subsequently, we identified plectin as the target of PCS2. Plectin is an intracellular structural protein, which is involved in tumor invasion and metastasis when it appears on cell surface. While PCS2 monomer did not display any anti-cancer activity, we designed a series of homo-dimeric versions of PCS2, and identified PCS2D1.2 optimized homo-dimer that displayed highly specific cytotoxicity towards CSCs over non-CSCs. PCS2D1.2 effectively blocked the in vitro colony formation and cell migration, hallmarks of CSCs. Furthermore, PCS2D1.2 reduced the in vivo tumor formation. In both in vitro and in vivo studies, PCS2D1.2 effectively reduced plectin expression and/or plectin-rich CSCs, but had no effect on non-CSCs. Therefore, PCS2D1.2 has the potential to be developed as a highly CSC specific drug candidate, which can be used in combination with current anti-cancer drugs.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Peptidomiméticos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Estructura Molecular , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Peptidomiméticos/síntesis química , Peptidomiméticos/química , Relación Estructura-Actividad
4.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445669

RESUMEN

Coronavirus Disease 2019 (COVID-19) remains a global health crisis, despite the development and success of vaccines in certain countries. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, uses its spike protein to bind to the human cell surface receptor angiotensin-converting enzyme 2 (ACE2), which allows the virus to enter the human body. Using our unique cell screening technology, we identified two ACE2-binding peptoid compounds and developed dimeric derivatives (ACE2P1D1 and ACE2P2D1) that effectively blocked spike protein-ACE2 interaction, resulting in the inhibition of SARS-CoV-2 pseudovirus entry into human cells. ACE2P1D1 and ACE2P2D1 also blocked infection by a D614G mutant pseudovirus. More importantly, these compounds do not decrease ACE2 expression nor its enzyme activity (which is important in normal blood pressure regulation), suggesting safe applicability in humans.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/prevención & control , Peptidil-Dipeptidasa A/metabolismo , Peptoides/farmacología , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , COVID-19/virología , Humanos , Células MCF-7 , Peptoides/metabolismo , Unión Proteica/efectos de los fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tratamiento Farmacológico de COVID-19
5.
Eur J Med Chem ; 137: 1-10, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28551176

RESUMEN

Ligand multimerizations enhance the binding affinity towards cell surface biomarkers through their avidity effects. Typical linkers connect individual monomeric ligand moieties from one end (e.g., C- or N-terminus of a peptide) and exclusively target protein receptors. The lipid phosphatidylserine (PS) is normally present on the cytoplasmic side of the eukaryotic cell membrane, but in tumors and tumor endothelial cells, this negatively charged PS flips to the outer layer. We recently reported a PS binding peptide-peptoid hybrid (PPS1) that has distinct positively charged and hydrophobic residue-containing regions. The PPS1 monomer is inactive, and upon C-terminal dimerization (PPS1D1), it triggers cytotoxicity. In the current study, a unique series of PPS1 multimeric derivatives were synthesized by switching the linker from the C-terminus to an internal position. The unimportant fourth residue (N-lys) from the C-terminus was utilized to build the linker. The synthesis strategy was developed employing variations of (I) the linker size, (II) the number of positively charged residues, and (III) the number of hydrophobic regions. Cytotoxicity of these new derivatives on HCC4017 lung cancer cells showed that a minimum of two hydrophobic regions was important to retain the activity and that the shortest linker length was optimal for activity.


Asunto(s)
Lípidos/farmacología , Péptidos/farmacología , Fosfatidilserinas/farmacología , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Lípidos/química , Estructura Molecular , Péptidos/química , Fosfatidilserinas/química , Relación Estructura-Actividad
6.
Medchemcomm ; 8(12): 2208-2215, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29527284

RESUMEN

We recently identified a peptide-peptoid hybrid, PPS1, which specifically recognized lipid-phosphatidylserine (PS). PPS1 consists of distinct positively charged and hydrophobic residue-containing regions. PPS1 monomer was inactive, but the dimeric form, PPS1D1, displayed strong cytotoxicity for lung cancer cells compared to normal cells in vitro, and reduced the tumor growth in vivo. The minimum pharmacophore of PPS1D1 showed that the first (methionine) and fourth (N-lysine) residues were not important for PPS1D1 cytotoxic activity. In this study, we further investigated these two residues, in particular the fourth residue that lies between the most important four residue hydrophobic region and two positively charged residues, to determine whether replacements of these moieties could gain activity improvements, or render PPS1D1 totally insensitive for binding recognition. The positively charged fourth residue N-lysine was replaced with the substituents having varied physiochemical properties, such as aromatic-hydrophobic, aliphatic-alicyclic, heterocyclic, and negatively charged residues, developing a mini-library of 39 derivatives. The standard 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) colorimetric and/or the calcein AM cell viability assays performed on HCC4017 lung cancer cells indicated that the fourth position of PPS1D1 was insensitive to most changes, except reversal to the negative charge significantly affected the activity. This observation may be due to the neutralization of the nearby positively charged residue that is essential for binding. In addition, shortening each monomeric sequence by eliminating the methionine at the first position did not affect the activity.

7.
Bioorg Med Chem ; 24(18): 4470-4477, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27485601

RESUMEN

We previously reported a unique peptide-peptoid hybrid, PPS1 that specifically recognizes lipid-phosphatidylserine (PS) and a few other negatively charged phospholipids, but not neutral phospholipids, on the cell membrane. The dimeric version of PPS1, i.e., PPS1D1 triggers strong cancer cell cytotoxicity and has been validated in lung cancer models both in vitro and in vivo. Given that PS and other negatively charged phospholipids are abundant in almost all tumor microenvironments, PPS1D1 is an attractive drug lead that can be developed into a globally applicable anti-cancer agent. Therefore, it is extremely important to identify the minimum pharmacophore of PPS1D1. In this study, we have synthesized alanine/sarcosine derivatives as well as truncated derivatives of PPS1D1. We performed ELISA-like competitive binding assay to evaluate the PS-recognition potential and standard MTS cell viability assay on HCC4017 lung cancer cells to validate the cell cytotoxicity effects of these derivatives. Our studies indicate that positively charged residues at the second and third positions, as well as four hydrophobic residues at the fifth through eighth positions, are imperative for the binding and activity of PPS1D1. Methionine at the first position was not essential, whereas the positively charged Nlys at the fourth position was minimally needed, as two derivatives that were synthesized replacing this residue were almost as active as PPS1D1.


Asunto(s)
Lípidos/química , Peptoides/química , Fosfatidilserinas/química , Línea Celular Tumoral , Dimerización , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA