Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Med Chem ; 63(20): 11902-11919, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32945666

RESUMEN

Malaria remains one of the most deadly infectious diseases, causing hundreds of thousands of deaths each year, primarily in young children and pregnant mothers. Here, we report the discovery and derivatization of a series of pyrazolo[3,4-b]pyridines targeting Plasmodium falciparum, the deadliest species of the malaria parasite. Hit compounds in this series display sub-micromolar in vitro activity against the intraerythrocytic stage of the parasite as well as little to no toxicity against the human fibroblast BJ and liver HepG2 cell lines. In addition, our hit compounds show good activity against the liver stage of the parasite but little activity against the gametocyte stage. Parasitological profiles, including rate of killing, docking, and molecular dynamics studies, suggest that our compounds may target the Qo binding site of cytochrome bc1.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Pirazoles/farmacología , Piridinas/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Línea Celular , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Pirazoles/síntesis química , Pirazoles/química , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad
2.
Proc Natl Acad Sci U S A ; 111(50): E5455-62, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453091

RESUMEN

Drug discovery for malaria has been transformed in the last 5 years by the discovery of many new lead compounds identified by phenotypic screening. The process of developing these compounds as drug leads and studying the cellular responses they induce is revealing new targets that regulate key processes in the Plasmodium parasites that cause malaria. We disclose herein that the clinical candidate (+)-SJ733 acts upon one of these targets, ATP4. ATP4 is thought to be a cation-transporting ATPase responsible for maintaining low intracellular Na(+) levels in the parasite. Treatment of parasitized erythrocytes with (+)-SJ733 in vitro caused a rapid perturbation of Na(+) homeostasis in the parasite. This perturbation was followed by profound physical changes in the infected cells, including increased membrane rigidity and externalization of phosphatidylserine, consistent with eryptosis (erythrocyte suicide) or senescence. These changes are proposed to underpin the rapid (+)-SJ733-induced clearance of parasites seen in vivo. Plasmodium falciparum ATPase 4 (pfatp4) mutations that confer resistance to (+)-SJ733 carry a high fitness cost. The speed with which (+)-SJ733 kills parasites and the high fitness cost associated with resistance-conferring mutations appear to slow and suppress the selection of highly drug-resistant mutants in vivo. Together, our data suggest that inhibitors of PfATP4 have highly attractive features for fast-acting antimalarials to be used in the global eradication campaign.


Asunto(s)
Antimaláricos/farmacología , ATPasas Transportadoras de Calcio/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Isoquinolinas/farmacología , Malaria/tratamiento farmacológico , Modelos Moleculares , Plasmodium/efectos de los fármacos , Antimaláricos/farmacocinética , ATPasas Transportadoras de Calcio/genética , Senescencia Celular/efectos de los fármacos , Descubrimiento de Drogas , Resistencia a Medicamentos/genética , Eritrocitos/efectos de los fármacos , Citometría de Flujo , Compuestos Heterocíclicos de 4 o más Anillos/farmacocinética , Ensayos Analíticos de Alto Rendimiento , Isoquinolinas/farmacocinética , Estructura Molecular
3.
J Med Chem ; 55(13): 6087-93, 2012 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-22708838

RESUMEN

Previously reported studies identified analogues of propafenone that had potent antimalarial activity, reduced cardiac ion channel activity, and properties that suggested the potential for clinical development for malaria. Careful examination of the bioavailability, pharmacokinetics, toxicology, and efficacy of this series of compounds using rodent models revealed orally bioavailable compounds that are nontoxic and suppress parasitemia in vivo. Although these compounds possess potential for further preclinical development, they also carry some significant challenges.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacocinética , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Propafenona/análogos & derivados , Administración Oral , Animales , Antimaláricos/administración & dosificación , Cloroquina/farmacología , Citocromo P-450 CYP2D6/metabolismo , Inhibidores del Citocromo P-450 CYP2D6 , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Femenino , Células HEK293 , Células Hep G2 , Humanos , Ratones , Ratones Endogámicos ICR , Microsomas Hepáticos/metabolismo , Parasitemia/tratamiento farmacológico , Relación Estructura-Actividad
4.
Mol Cell Biol ; 22(24): 8601-11, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12446779

RESUMEN

The human genome is far smaller than originally estimated, and one explanation is that alternative splicing creates greater proteomic complexity than a simple count of open reading frames would suggest. The p53 homologue p63, for example, is a tetrameric transcription factor implicated in epithelial development and expressed as at least six isoforms with widely differing transactivation potential. In particular, p63alpha isoforms contain a 27-kDa C-terminal region that drastically reduces their activity and is of clear biological importance, since patients with deletions in this C terminus have phenotypes very similar to patients with mutations in the DNA-binding domain. We have identified a novel domain within this C terminus that is necessary and sufficient for transcriptional inhibition and which acts by binding to a region in the N-terminal transactivation domain of p63 homologous to the MDM2 binding site in p53. Based on this mechanism, we provide a model that explains the transactivation potential of homo- and heterotetramers composed of different p63 isoforms and their effect on p53.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de la Membrana , Fosfoproteínas/metabolismo , Isoformas de Proteínas/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Núcleo Celular/metabolismo , Proteínas de Unión al ADN , Genes Reporteros , Genes Supresores de Tumor , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Péptidos/genética , Péptidos/metabolismo , Fenotipo , Fosfoproteínas/genética , Isoformas de Proteínas/genética , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Alineación de Secuencia , Transactivadores/genética , Factores de Transcripción , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA