Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biochem Biophys Rep ; 39: 101755, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38974022

RESUMEN

Ovarian cancer (OC) patients develop ascites, an accumulation of ascitic fluid in the peritoneal cavity anda sign of tumour dissemination within the peritoneal cavity. This body fluid is under-researched, mainly regarding the ascites formed during tumour progression that have no diagnostic value and, therefore, are discarded. We performed a discovery proteomics study to identify new biomarkers in the ascites supernatant of OC patients. In this preliminary study, we analyzed a small amount of OC ascites to highlight the importance of not discarding such biological material during treatment, which could be valuable for OC management. Our findings reveal that OC malignant ascitic fluid (MAF) displays a proliferative environment that promotes the growth of OC cells that shift the metabolic pathway using alternative sources of nutrients, such as the cholesterol pathway. Also, OC ascites drained from patients during treatment showed an immunosuppressive environment, with up-regulation of proteins from the signaling pathways of IL-4 and IL-13 and down-regulation from the MHC-II. This preliminary study pinpointed a new protein (Transmembrane Protein 132A) in the OC context that deserves to be better explored in a more extensive cohort of patients' samples. The proteomic profile of MAF from OC patients provides a unique insight into the metabolic kinetics of cancer cells during disease progression, and this information can be used to develop more effective treatment strategies.

2.
Respir Res ; 25(1): 257, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909206

RESUMEN

BACKGROUND: Pulmonary fibrosis (PF) represents the pathologic end stage of several interstitial lung diseases (ILDs) associated with high morbidity and mortality rates. However, current treatments can only delay disease progression rather than provide a cure. The role of inflammation in PF progression is well-established, but new insights into immune regulation are fundamental for developing more efficient therapies. c-MET signaling has been implicated in the migratory capacity and effector functions of immune cells. Nevertheless, the role of this signaling pathway in the context of PF-associated lung diseases remains unexplored. METHODS: To determine the influence of c-MET in immune cells in the progression of pulmonary fibrosis, we used a conditional deletion of c-Met in immune cells. To induce pulmonary fibrosis mice were administered with bleomycin (BLM) intratracheally. Over the course of 21 days, mice were assessed for weight change, and after euthanasia at different timepoints, bronchoalveolar lavage fluid cells and lung tissue were assessed for inflammation and fibrosis. Furthermore, c-MET expression was assessed in cryobiopsy sections, bronchoalveolar lavage fluid cells samples and single cell RNA-sequencing dataset from human patients with distinct interstitial lung diseases. RESULTS: c-MET expression was induced in lung immune cells, specifically in T cells, interstitial macrophages, and neutrophils, during the inflammatory phase of BLM-induced PF mouse model. Deletion of c-Met in immune cells correlated with earlier weight recovery and improved survival of BLM-treated mice. Moreover, the deletion of c-Met in immune cells was associated with early recruitment of the immune cell populations, normally found to express c-MET, leading to a subsequent attenuation of the cytotoxic and proinflammatory environment. Consequently, the less extensive inflammatory response, possibly coupled with tissue repair, culminated in less exacerbated fibrotic lesions. Furthermore, c-MET expression was up-regulated in lung T cells from patients with fibrosing ILD, suggesting a potential involvement of c-MET in the development of fibrosing disease. CONCLUSIONS: These results highlight the critical contribution of c-MET signaling in immune cells to their enhanced uncontrolled recruitment and activation toward a proinflammatory and profibrotic phenotype, leading to the exacerbation of lung injury and consequent development of fibrosis.


Asunto(s)
Ratones Endogámicos C57BL , Neumonía , Proteínas Proto-Oncogénicas c-met , Fibrosis Pulmonar , Animales , Femenino , Humanos , Masculino , Ratones , Bleomicina/toxicidad , Modelos Animales de Enfermedad , Pulmón/patología , Pulmón/metabolismo , Pulmón/inmunología , Ratones Noqueados , Neumonía/inducido químicamente , Neumonía/patología , Neumonía/metabolismo , Neumonía/inmunología , Neumonía/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/genética
3.
Cancers (Basel) ; 16(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38611096

RESUMEN

Advanced urothelial bladder cancer (UBC) patients are tagged by a dismal prognosis and high mortality rates, mostly due to their poor response to standard-of-care platinum-based therapy. Mediators of chemoresistance are not fully elucidated. This work aimed to study the metabolic profile of advanced UBC, in the context of cisplatin resistance. Three isogenic pairs of parental cell lines (T24, HT1376 and KU1919) and the matching cisplatin-resistant (R) sublines were used. A set of functional assays was used to perform a metabolic screening on the cells. In comparison to the parental sublines, a tendency was observed towards an exacerbated glycolytic metabolism in the cisplatin-resistant T24 and HT1376 cells; this glycolytic phenotype was particularly evident for the HT1376/HT1376R pair, for which the cisplatin resistance ratio was higher. HT1376R cells showed decreased basal respiration and oxygen consumption associated with ATP production; in accordance, the extracellular acidification rate was also higher in the resistant subline. Glycolytic rate assay confirmed that these cells presented higher basal glycolysis, with an increase in proton efflux. While the results of real-time metabolomics seem to substantiate the manifestation of the Warburg phenotype in HT1376R cells, a shift towards distinct metabolic pathways involving lactate uptake, lipid biosynthesis and glutamate metabolism occurred with time. On the other hand, KU1919R cells seem to engage in a metabolic rewiring, recovering their preference for oxidative phosphorylation. In conclusion, cisplatin-resistant UBC cells seem to display deep metabolic alterations surpassing the Warburg effect, which likely depend on the molecular signature of each cell line.

4.
Cytokine ; 169: 156301, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37515982

RESUMEN

Leishmania infection of macrophages results in altered Ras isoforms expression and Toll-like receptor-2 (TLR2) expression and functions. Therefore, we examined whether TLR2 would selectively alter Ras isoforms' expression in macrophages. We observed that TLR2 ligands- Pam3CSK4, peptidoglycan (PGN), and FSL- selectively modulated the expression of Ras isoforms in BALB/c-derived elicited macrophages. Lentivirally-expressed TLR1-shRNA significantly reversed this Ras isoforms expression profile. TLR2-deficient L. major-infected macrophages and the lymph node cells from the L. major-infected mice showed similarly reversed Ras isoforms expression. Transfection of the macrophages with the siRNAs for the adaptors- Myeloid Differentiation factor 88 (MyD88) and Toll-Interleukin-1 Receptor (TIR) domain-containing adaptor protein (TIRAP)- or Interleukin-1 Receptor-Associated Kinases (IRAKs)- IRAK1 and IRAK4- significantly inhibited the L. major-induced down-regulation of K-Ras, and up-regulation of N-Ras and H-Ras, expression. The TLR1/TLR2-ligand Pam3CSK4 increased IL-10 and TGF-ß expression in macrophages. Pam3CSK4 upregulated N-Ras and H-Ras, but down-regulated K-Ras, expression in C57BL/6 wild-type, but not in IL-10-deficient, macrophages. IL-10 or TGF-ß signaling inhibition selectively regulated Ras isoforms expression. These observations indicate the specificity of the TLR2 regulation of Ras isoforms and their selective modulation by MyD88, TIRAP, and IRAKs, but not IL-10 or TGF-ß, signaling.


Asunto(s)
Leishmania major , Leishmaniasis Cutánea , Macrófagos , Receptor Toll-Like 2 , Proteínas ras , Leishmaniasis Cutánea/metabolismo , Animales , Ratones , Ratones Endogámicos BALB C , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Macrófagos/metabolismo , Ligandos , Proteínas ras/metabolismo , Peptidoglicano/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1 , Ratones Endogámicos C57BL , Isoformas de Proteínas/metabolismo , Regulación hacia Abajo
5.
J Proteome Res ; 22(7): 2256-2270, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37339249

RESUMEN

Leishmania donovani infection of macrophages drives profound changes in the metabolism of both the host macrophage and the parasite, which undergoes different phases of development culminating in replication and propagation. However, the dynamics of this parasite-macrophage cometabolome are poorly understood. In this study, a multiplatform metabolomics pipeline combining untargeted, high-resolution CE-TOF/MS and LC-QTOF/MS with targeted LC-QqQ/MS was followed to characterize the metabolome alterations induced in L. donovani-infected human monocyte-derived macrophages from different donors at 12, 36, and 72 h post-infection. The set of alterations known to occur during Leishmania infection of macrophages, substantially expanded in this investigation, characterized the dynamics of the glycerophospholipid, sphingolipid, purine, pentose phosphate, glycolytic, TCA, and amino acid metabolism. Our results showed that only citrulline, arginine, and glutamine exhibited constant trends across all studied infection time points, while most metabolite alterations underwent a partial recovery during amastigote maturation. We determined a major metabolite response pointing to an early induction of sphingomyelinase and phospholipase activities and correlated with amino acid depletion. These data represent a comprehensive overview of the metabolome alterations occurring during promastigote-to-amastigote differentiation and maturation of L. donovani inside macrophages that contributes to our understanding of the relationship between L. donovani pathogenesis and metabolic dysregulation.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Humanos , Leishmania donovani/metabolismo , Macrófagos/metabolismo , Metaboloma , Metabolómica , Aminoácidos/metabolismo , Leishmaniasis Visceral/metabolismo , Leishmaniasis Visceral/parasitología
6.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38203494

RESUMEN

Ovarian cancer metastization is accompanied by the development of malignant ascites, which are associated with poor prognosis. The acellular fraction of this ascitic fluid contains tumor-promoting soluble factors, bioactive lipids, cytokines, and extracellular vesicles, all of which communicate with the tumor cells within this peritoneal fluid. Metabolomic profiling of ovarian cancer ascites has revealed significant differences in the pathways of fatty acids, cholesterol, glucose, and insulin. The proteins involved in these pathways promote tumor growth, resistance to chemotherapy, and immune evasion. Unveiling the key role of this liquid tumor microenvironment is crucial for discovering more efficient treatment options. This review focuses on the cholesterol and insulin pathways in ovarian cancer, identifying statins and metformin as viable treatment options when combined with standard chemotherapy. These findings are supported by clinical trials showing improved overall survival with these combinations. Additionally, statins and metformin are associated with the reversal of T-cell exhaustion, positioning these drugs as potential combinatory strategies to improve immunotherapy outcomes in ovarian cancer patients.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Metformina , Neoplasias Ováricas , Humanos , Femenino , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Metformina/uso terapéutico , Ascitis , Neoplasias Ováricas/tratamiento farmacológico , Insulina , Inmunoterapia , Colesterol , Microambiente Tumoral
7.
Front Cell Infect Microbiol ; 12: 1005839, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275017

RESUMEN

Chronic pulmonary aspergillosis (CPA) is a devastating disease with increasing prevalence worldwide. The characteristic granulomatous-like inflammation poses as the major setback to effective antifungal therapies by limiting drug access to fungi. These inflammatory lung structures are reported to be severely hypoxic; nevertheless, the underlying mechanisms whereby these processes contribute to fungal persistence remain largely unknown. Hypoxia-inducible factor 1 alpha (HIF-1α), besides being the major cellular response regulator to hypoxia, is a known central immune modulator. Here, we used a model of Aspergillus fumigatus airway infection in myeloid-restricted HIF-1α knock-out (mHif1α-/- ) mice to replicate the complex structures resembling fungal granulomas and evaluate the contribution of HIF-1α to antifungal immunity and disease development. We found that fungal-elicited granulomas in mHif1α-/- mice had significantly smaller areas, along with extensive hyphal growth and increased lung fungal burden. This phenotype was associated with defective neutrophil recruitment and an increased neutrophil death, therefore highlighting a central role for HIF-1α-mediated regulation of neutrophil function in the pathogenesis of chronic fungal infection. These results hold the promise of an improved capacity to manage the progression of chronic fungal disease and open new avenues for additional therapeutic targets and niches of intervention.


Asunto(s)
Antifúngicos , Aspergilosis , Ratones , Animales , Infiltración Neutrófila , Inflamación , Hipoxia , Granuloma
8.
Sci Rep ; 12(1): 17047, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220879

RESUMEN

COVID-19 is the global pandemic that affected our population in the past 2 years. Considerable research has been done to better understand the pathophysiology of this disease and to identify new therapeutic targets, especially for severe cases. Galectin-3 (Gal-3) is a receptor present at the surface of different cell types, namely epithelial and inflammatory cells, which has been described as a severity marker in COVID-19. The activation of Gal-3 through its binding protein (Gal-3BP) is directly linked to the production of pro-inflammatory cytokines that contribute for the cytokine storm (CS) observed in severe COVID-19 patients. Here, we show that D2, a recombinant fragment of the lectin-binding region of Gal-3BP was able to stimulate the expression of IL-6 in colon and lung epithelial cell lines in ß-galactoside dependent manner. We further show that D2-induced IL-6 augmentation was reduced by the anti-Gal-3BP monoclonal antibody 1959. Our data confirm and extend prior findings of Gal-3BP mediated IL-6 induction, enlightening the potential of its antibody-mediated s blockage for the prevention and treatment of CS and severe disease in COVID-19 patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacología , Proteínas Portadoras , Línea Celular , Síndrome de Liberación de Citoquinas , Citocinas/metabolismo , Galectina 3/metabolismo , Humanos , Interleucina-6/metabolismo
9.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142615

RESUMEN

Ovarian cancer (OC) has a specific type of metastasis, via transcoelomic, and most of the patients are diagnosed at advanced stages with multiple tumors spread within the peritoneal cavity. The role of Malignant Ascites (MA) is to serve as a transporter of tumor cells from the primary location to the peritoneal wall or to the surface of the peritoneal organs. MA comprise cellular components with tumor and non-tumor cells and acellular components, creating a unique microenvironment capable of modifying the tumor behavior. These microenvironment factors influence tumor cell proliferation, progression, chemoresistance, and immune evasion, suggesting that MA play an active role in OC progression. Tumor cells induce a complex immune suppression that neutralizes antitumor immunity, leading to disease progression and treatment failure, provoking a tumor-promoting environment. In this review, we will focus on the High-Grade Serous Carcinoma (HGSC) microenvironment with special attention to the tumor microenvironment immunology.


Asunto(s)
Neoplasias Ováricas , Neoplasias Peritoneales , Ascitis/patología , Carcinoma Epitelial de Ovario , Femenino , Humanos , Neoplasias Ováricas/patología , Neoplasias Peritoneales/secundario , Microambiente Tumoral
10.
Front Immunol ; 13: 946181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935958

RESUMEN

Control of tuberculosis depends on the rapid expression of protective CD4+ T-cell responses in the Mycobacterium tuberculosis (Mtb)-infected lungs. We have recently shown that the immunomodulatory cytokine IL-10 acts intrinsically in CD4+ T cells and impairs their parenchymal migratory capacity, thereby preventing control of Mtb infection. Herein, we show that IL-10 overexpression does not impact the protection conferred by the established memory CD4+ T-cell response, as BCG-vaccinated mice overexpressing IL-10 only during Mtb infection display an accelerated, BCG-induced, Ag85b-specific CD4+ T-cell response and control Mtb infection. However, IL-10 inhibits the migration of recently activated ESAT-6-specific CD4+ T cells into the lung parenchyma and impairs the development of ectopic lymphoid structures associated with reduced expression of the chemokine receptors CXCR5 and CCR7. Together, our data support a role for BCG vaccination in preventing the immunosuppressive effects of IL-10 in the fast progression of Mtb infection and may provide valuable insights on the mechanisms contributing to the variable efficacy of BCG vaccination.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Vacuna BCG , Interleucina-10 , Ratones , Tuberculosis/microbiología , Tuberculosis/prevención & control , Vacunación
11.
Am J Respir Crit Care Med ; 206(9): 1140-1152, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35767663

RESUMEN

Rationale: Sarcoidosis is a multisystemic inflammatory disease characterized by the formation of granulomas in response to persistent stimuli. The long pentraxin PTX3 (pentraxin 3) has emerged as a component of humoral innate immunity with essential functions in the resolution of inflammation, but its role during granuloma formation is unknown. Objectives: To evaluate PTX3 as a modulator of pathogenic signals involved in granuloma formation and inflammation in sarcoidosis. Methods: Peripheral blood mononuclear cells obtained from patients with sarcoidosis harboring loss-of-function genetic variants and gene-deleted mice were used to assess the role of PTX3 in experimental models of granuloma formation in vitro and in vivo. The identified mechanisms of granulomatous inflammation were further evaluated in tissue and BAL samples and correlated with the disease course. Measurements and Main Results: We have identified a molecular link between PTX3 deficiency and the pathogenic amplification of complement activation to promote granuloma formation. Mechanistically, PTX3 deficiency licensed the complement component C5a-mediated activation of the metabolic checkpoint kinase mTORC1 (mammalian target of rapamycin complex 1) and the reprogramming of macrophages toward increased glycolysis to foster their proliferation and aggregation. This process sustained the further recruitment of granuloma-promoting immune cells and the associated proinflammatory microenvironment and influenced the clinical course of the disease. Conclusions: Our results identify PTX3 as a pivotal molecule that regulates complement-mediated signaling cues in macrophages to restrain granulomatous inflammation and highlight the therapeutic potential of this signaling axis in targeting granuloma formation in sarcoidosis.


Asunto(s)
Proteína C-Reactiva , Activación de Macrófagos , Sarcoidosis , Componente Amiloide P Sérico , Animales , Ratones , Proteína C-Reactiva/metabolismo , Proteínas del Sistema Complemento , Granuloma , Inflamación , Leucocitos Mononucleares/metabolismo , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/metabolismo , Humanos
12.
Nanomedicine ; 42: 102548, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35301158

RESUMEN

This study reports the formulation and delivery of hyaluronic acid-Zein (HA-Zein) nanogels loaded with Shikonin (SK) to selectively attenuate macrophage inflammasome. The self-assembled nanogels, produced by nanoprecipitation, exhibited high encapsulation efficiency, and were selectively internalized by human THP-1-derived macrophages without eliciting cytotoxic responses. Cell treatment with HA-Zein-SK nanogels before stimulation with LPS and Nigericin significantly suppressed caspase-1 activation and IL-1ß production, indicating inflammasome inhibition. Importantly, HA-Zein-SK nanogels bioinstructed inflammasome activated macrophages towards an anti-inflammatory CD163highHLA-DRlow phenotype and led to a marked reduction in the release of pro-inflammatory mediators (TNF-α, IL-6 and IP-10). Extracellular metabolic profiling additionally revealed SK-mediated downregulation of cellular glycolytic activity, which was corroborated by a significant decrease of glycolytic genes transcription. All in all, our findings demonstrate the potential of bioactive SK-containing, self-assembled nanogels to modulate exacerbated responses in innate immune cells and, prospectively, in human tissues where NRLP3 inflammasome is abnormally activated upon injury or disease.


Asunto(s)
Inflamasomas , Zeína , Inflamasomas/metabolismo , Interleucina-1beta/genética , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nanogeles , Naftoquinonas
13.
Cell Death Differ ; 29(8): 1486-1499, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35066575

RESUMEN

Severe SARS-CoV-2 infections are characterized by lymphopenia, but the mechanisms involved are still elusive. Based on our knowledge of HIV pathophysiology, we hypothesized that SARS-CoV-2 infection-mediated lymphopenia could also be related to T cell apoptosis. By comparing intensive care unit (ICU) and non-ICU COVID-19 patients with age-matched healthy donors, we found a strong positive correlation between plasma levels of soluble FasL (sFasL) and T cell surface expression of Fas/CD95 with the propensity of T cells to die and CD4 T cell counts. Plasma levels of sFasL and T cell death are correlated with CXCL10 which is part of the signature of 4 biomarkers of disease severity (ROC, 0.98). We also found that members of the Bcl-2 family had modulated in the T cells of COVID-19 patients. More importantly, we demonstrated that the pan-caspase inhibitor, Q-VD, prevents T cell death by apoptosis and enhances Th1 transcripts. Altogether, our results are compatible with a model in which T-cell apoptosis accounts for T lymphopenia in individuals with severe COVID-19. Therefore, a strategy aimed at blocking caspase activation could be beneficial for preventing immunodeficiency in COVID-19 patients.


Asunto(s)
COVID-19 , Linfopenia , Apoptosis , Linfocitos T CD4-Positivos/metabolismo , Caspasas/metabolismo , Proteína Ligando Fas , Humanos , SARS-CoV-2 , Linfocitos T/metabolismo , Receptor fas/metabolismo
14.
Curr Opin Microbiol ; 63: 231-237, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34438164

RESUMEN

Manipulation of host metabolic fluxes by Leishmania represents a strategy to circumvent host immune response leading to long-term parasite survival and playing an important role in the pathology of infection. Specific Leishmania-dependent metabolic alterations in infected macrophages have been associated with resistance or susceptibility to infection. Thus, deciphering the multilevel interactions between metabolism and function on innate immune cells during infection offers considerable therapeutic or prophylactic promise. In this review, we provide an overview of recent literature highlighting Leishmania-macrophage interactions and discuss the potential of metabolic targeted therapies to shift the balance of dysfunctional, damaging, or non-productive responses to protective immune reactivity patterns towards pathogen elimination.


Asunto(s)
Leishmania , Interacciones Huésped-Parásitos , Inmunidad , Macrófagos
15.
Immunology ; 164(1): 173-189, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33964011

RESUMEN

Multiple pathogen-associated molecular patterns (PAMPs) on a pathogen's surface imply their simultaneous recognition by the host cell membrane-located multiple PAMP-specific Toll-like receptors (TLRs). The TLRs on endosomes recognize internalized pathogen-derived nucleic acids and trigger anti-pathogen immune responses aimed at eliminating the intracellular pathogen. Whether the TLRs influence each other's expression and effector responses-termed TLR interdependency-remains unknown. Herein, we first probed the existence of TLR interdependencies and next determined how targeting TLR interdependencies might determine the outcome of Leishmania infection. We observed that TLRs selectively altered expression of their own and of other TLRs revealing novel TLR interdependencies. Leishmania major-an intra-macrophage parasite inflicting the disease cutaneous leishmaniasis in 88 countries-altered this TLR interdependency unfolding a unique immune evasion mechanism. We targeted this TLR interdependency by selective silencing of rationally chosen TLRs and by stimulation with selective TLR ligands working out a novel phase-specific treatment regimen. Targeting the TLR interdependency elicited a host-protective anti-leishmanial immune response and reduced parasite burden. To test whether this observation could be used as a scientific rationale for treating a potentially fatal L. donovani infection, which causes visceral leishmaniasis, we targeted the inter-TLR dependency adopting the same treatment regimen. We observed reduced splenic Leishman-Donovan units accompanied by host-protective immune response in susceptible BALB/c mice. The TLR interdependency optimizes TLR-induced immune response by a novel immunoregulatory framework and scientifically rationalizes targeting TLRs in tandem and in sequence for redirecting immune responses against an intracellular pathogen.


Asunto(s)
Leishmania major/fisiología , Leishmaniasis Cutánea/inmunología , Macrófagos/inmunología , Receptores Toll-Like/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Silenciador del Gen , Interacciones Huésped-Parásitos , Humanos , Inmunomodulación , Leishmaniasis Cutánea/terapia , Ratones , Ratones Endogámicos BALB C , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , ARN Interferente Pequeño/genética , Receptor Cross-Talk , Transducción de Señal , Receptores Toll-Like/genética
16.
Front Immunol ; 12: 613422, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679753

RESUMEN

Hyper-inflammatory responses induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a major cause of disease severity and death. Predictive prognosis biomarkers to guide therapeutics are critically lacking. Several studies have indicated a "cytokine storm" with the release of interleukin-1 (IL-1), IL-6, and IL-8, along with tumor necrosis factor alpha (TNFα) and other inflammatory mediators. Here, we proposed to assess the relationship between IL-6 and outcomes of patients with coronavirus disease 2019 (COVID-19). Our cohort consisted of 46 adult patients with PCR-proven SARS-CoV-2 infection admitted in a COVID-19 ward of the Hospital de Braga (HB) from April 7 to May 7, 2020, whose IL-6 levels were followed over time. We found that IL-6 levels were significantly different between the disease stages. Also, we found a significant negative correlation between IL-6 levels during stages IIb and III, peripheral oxygen saturation (SpO2), and partial pressure of oxygen in arterial blood (PaO2), showing that IL-6 correlates with respiratory failure. Compared to the inflammatory markers available in the clinic routine, we found a positive correlation between IL-6 and C-reactive protein (CRP). However, when we assessed the predictive value of these two markers, IL-6 behaves as a better predictor of disease progression. In a binary logistic regression, IL-6 level was the most significant predictor of the non-survivors group, when compared to age and CRP. Herein, we present IL-6 as a relevant tool for prognostic evaluation, mainly as a predictor of outcome.


Asunto(s)
COVID-19 , Síndrome de Liberación de Citoquinas , Interleucina-6/sangre , SARS-CoV-2/metabolismo , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , COVID-19/sangre , COVID-19/mortalidad , Síndrome de Liberación de Citoquinas/sangre , Síndrome de Liberación de Citoquinas/mortalidad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Oxígeno/sangre
17.
Cytokine ; 145: 155320, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33127260

RESUMEN

Cytokines are key mediators of immune responses to autoantigens, tumor antigens and foreign antigens including pathogens and transplant antigens. The cytokines are produced by a variety of immune and non-immune cells and are dynamically regulated. Remarkably, during toxic and septic shock syndromes, anaphylactic shock and in certain viral infections supra-physiologic levels of cytokine storms are produced culminating in multi-organ failure and death. However, Leishmania infection is a chronic parasitic infection with alternate outcomes- healing or non-healing. Leishmania invades macrophages and inflicts the complex of diseases called Leishmaniases. Depending on the species of Leishmania and the organs affected, the diseases are categorized into Cutaneous Leishmaniasis (CL), Muco-cutaneous Leishmaniasis (MCL) and Visceral Leishmaniasis (VL). After successful chemotherapy of VL, a dermal manifestation- termed post-kalazar dermal leishmaniasis (PKDL)- of the same infection occurs in some patients. The operational frameworks for different cytokines have been laid to discuss how these immune mediators control each of these forms of leishmaniases. One of these frameworks is the regulation of monocytopoiesis including the role of macrophages subsets and thrombopoiesis in leishmaniases. Macrophage metabolism is linked to different cytokines and is thereby associated with the manifestation of the resistance or susceptibility to Leishmania infection and of drug resistance. The chemokine-regulated immune cell movements present the landscape of infection and pathogenesis. T cells subsets- the IFN-γ-secreting Ly6C + T cells and the regulatory T cell subsets- provide the initial skewing of Th cell subset and regulation of effector Th subsets, respectively, eventually deciding the outcome of infection.


Asunto(s)
Citocinas/inmunología , Inmunidad/inmunología , Leishmania/inmunología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Visceral/inmunología , Animales , Humanos , Leishmaniasis Cutánea/parasitología , Leishmaniasis Visceral/parasitología , Macrófagos/inmunología , Macrófagos/parasitología , Monocitos/inmunología , Monocitos/parasitología , Subgrupos de Linfocitos T/inmunología , Trombopoyesis/inmunología
18.
Rev. bras. parasitol. vet ; 30(2): e022620, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1251390

RESUMEN

Abstract Efforts to control a zoonotic disease such as visceral leishmaniasis (VL) caused by Leishmania infantum can be successful if they rely on comprehensive data on animal infection. In Bahia state, Brazil, human VL is endemic, yet some areas have no epidemiological data on canine L. infantum infection and canine leishmaniasis (CanL) to date. We aimed to perform an epidemiological study describing the spatial distribution and characterizing canine L. infantum infection in two districts of the municipality of Muritiba, where human cases have occurred. Brazilian official serodiagnostic protocol (ELISA and immunochromatographic tests), PCR and clinical examination were performed in 351 owned dogs. A seroprevalence of 15.7% (55/351) was found, and L. infantum identified in 88.8% (32/36) of PCR tested samples. Spatial distribution of positive dogs indicated infection in both urban and rural districts. There was no association between seropositivity and sex or breed, but dogs older than 2 years were 3.8 times more likely to be seropositive (95% CI 1.57 - 9.18) than younger dogs. Among seropositive dogs, 80% (44/55) had clinical manifestations of CanL: 75% (33/44) presented dermatopathy, 50% (22/44) emaciation, and 29.5% (13/44) ophthalmopathy. This is the first report on canine seroprevalence and natural L. infantum infection in Muritiba, Bahia.


Resumo O sucesso dos esforços para controlar uma doença zoonótica como a leishmaniose visceral (LV), causada por Leishmania infantum, depende de dados abrangentes sobre a infecção animal. Na Bahia, Brasil, embora a LV humana seja endêmica, diversos municípios, como Muritiba, ainda não dispõem de dados epidemiológicos sobre infecção por L. infantum e leishmaniose canina (LCan). Objetivou-se realizar um estudo epidemiológico para descrever a distribuição espacial e caracterizar a infecção canina por L. infantum em dois distritos de Muritiba, onde notificam-se casos humanos. Foi aplicado o protocolo sorodiagnóstico oficial brasileiro (ELISA e imunocromatografia), PCR e exame clínico em 351 cães domiciliados. Encontrou-se uma soroprevalência de 15,7% (55/351) e positividade de 88,8% (32/36) na PCR para L. infantum. A distribuição espacial dos cães positivos indicou infecção em ambos os distritos, urbano e rural. Não houve associação entre soropositividade e sexo ou raça, mas cães com idade acima de 2 anos foram 3,8 vezes mais soropositivos (IC 95% 1,57 - 9,18). Dentre os cães soropositivos, 80% (44/55) apresentavam manifestações clínicas de LCan: 75% (33/44) apresentavam dermatopatia; 50% (22/44) emagrecimento e 29,5% (13/44) oftalmopatia. Este é o primeiro estudo a determinar a soroprevalência e confirmar a circulação natural de L. infantum e LCan em cães de Muritiba.


Asunto(s)
Humanos , Animales , Perros , Leishmaniasis/veterinaria , Leishmania infantum , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/epidemiología , Leishmaniasis Visceral/diagnóstico , Leishmaniasis Visceral/epidemiología , Brasil/epidemiología , Anticuerpos Antiprotozoarios , Estudios Seroepidemiológicos , Ciudades , Leishmaniasis Visceral/veterinaria
19.
Nat Commun ; 11(1): 2282, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385235

RESUMEN

In response to infection, macrophages adapt their metabolism rapidly to enhance glycolysis and fuel specialized antimicrobial effector functions. Here we show that fungal melanin is an essential molecule required for the metabolic rewiring of macrophages during infection with the fungal pathogen Aspergillus fumigatus. Using pharmacological and genetic tools, we reveal a molecular link between calcium sequestration by melanin inside the phagosome and induction of glycolysis required for efficient innate immune responses. By remodeling the intracellular calcium machinery and impairing signaling via calmodulin, melanin drives an immunometabolic signaling axis towards glycolysis with activation of hypoxia-inducible factor 1 subunit alpha (HIF-1α) and phagosomal recruitment of mammalian target of rapamycin (mTOR). These data demonstrate a pivotal mechanism in the immunometabolic regulation of macrophages during fungal infection and highlight the metabolic repurposing of immune cells as a potential therapeutic strategy.


Asunto(s)
Aspergillus fumigatus/inmunología , Inmunidad , Macrófagos/inmunología , Macrófagos/microbiología , Melaninas/metabolismo , Fagosomas/metabolismo , Animales , Señalización del Calcio , Glucosa/metabolismo , Glucólisis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lactatos/metabolismo , Ratones Endogámicos C57BL , Serina-Treonina Quinasas TOR/metabolismo , Transcriptoma/genética
20.
Cell Oncol (Dordr) ; 43(4): 643-654, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32227296

RESUMEN

PURPOSE: Previously, inflammation has been found to be associated with the development of lung cancer. Despite their well-characterized pro-inflammatory functions, the putative roles of interleukin-17 (IL-17) cytokine family members in tumorigenesis have remained controversial. While IL-17A exhibits both pro- and anti-tumor effects, IL-17F has been suggested to serve as a candidate for cancer therapy. Thus, we aimed at clarifying the involvement of IL-17A/F in lung cancer. METHODS: IL-17 receptor expression in human and murine lung cancer cells was assessed using immunofluorescence. The effect of IL-17A/F stimulation on lung cancer cell viability (SRB assay) and metabolism (glucose consumption and lactate production) was evaluated under normoxic and hypoxic conditions. Characterization of IL-17A/F-stimulated macrophages was performed by flow cytometry and ELISA. The effect of conditioned media (CM) from IL-17A/F-stimulated macrophages was evaluated on lung cancer cell migration. The effect of CM-stimulated macrophages on lung tumor growth, proliferation and angiogenesis was evaluated in vivo using a chicken chorioallantoic membrane (CAM) assay. RESULTS: No alterations in lung cancer cell viability or metabolism were observed upon direct stimulation with IL-17A/F. We found, however, that CM from IL-17A/F-stimulated macrophages promoted both murine and human lung cancer cell progression through an increased migration capacity in vitro and enhanced in vivo tumor growth, proliferation and angiogenesis. These findings were supported by an increased polarization of human macrophages towards a M2-like phenotype. CONCLUSIONS: Our data indicate that IL-17A/F act through immune cell orchestration, i.e., of macrophages, to promote lung cancer cell growth and progression. In addition, our data provide a link between IL-17A/F activity and lung cancer cell-macrophage crosstalk.


Asunto(s)
Interleucina-17/metabolismo , Neoplasias Pulmonares/patología , Macrófagos/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Medios de Cultivo Condicionados/farmacología , Progresión de la Enfermedad , Humanos , Interleucina-17/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA