Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nature ; 629(8011): 435-442, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658751

RESUMEN

WRN helicase is a promising target for treatment of cancers with microsatellite instability (MSI) due to its essential role in resolving deleterious non-canonical DNA structures that accumulate in cells with faulty mismatch repair mechanisms1-5. Currently there are no approved drugs directly targeting human DNA or RNA helicases, in part owing to the challenging nature of developing potent and selective compounds to this class of proteins. Here we describe the chemoproteomics-enabled discovery of a clinical-stage, covalent allosteric inhibitor of WRN, VVD-133214. This compound selectively engages a cysteine (C727) located in a region of the helicase domain subject to interdomain movement during DNA unwinding. VVD-133214 binds WRN protein cooperatively with nucleotide and stabilizes compact conformations lacking the dynamic flexibility necessary for proper helicase function, resulting in widespread double-stranded DNA breaks, nuclear swelling and cell death in MSI-high (MSI-H), but not in microsatellite-stable, cells. The compound was well tolerated in mice and led to robust tumour regression in multiple MSI-H colorectal cancer cell lines and patient-derived xenograft models. Our work shows an allosteric approach for inhibition of WRN function that circumvents competition from an endogenous ATP cofactor in cancer cells, and designates VVD-133214 as a promising drug candidate for patients with MSI-H cancers.


Asunto(s)
Regulación Alostérica , Descubrimiento de Drogas , Inhibidores Enzimáticos , Proteómica , Helicasa del Síndrome de Werner , Animales , Femenino , Humanos , Masculino , Ratones , Regulación Alostérica/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Cisteína/efectos de los fármacos , Cisteína/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inestabilidad de Microsatélites , Modelos Moleculares , Helicasa del Síndrome de Werner/antagonistas & inhibidores , Helicasa del Síndrome de Werner/química , Helicasa del Síndrome de Werner/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Muerte Celular/efectos de los fármacos , Adenosina Trifosfato/metabolismo
2.
J Am Chem Soc ; 146(15): 10393-10406, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38569115

RESUMEN

Covalent chemistry coupled with activity-based protein profiling (ABPP) offers a versatile way to discover ligands for proteins in native biological systems. Here, we describe a set of stereo- and regiochemically defined spirocycle acrylamides and the analysis of these electrophilic "stereoprobes" in human cancer cells by cysteine-directed ABPP. Despite showing attenuated reactivity compared to structurally related azetidine acrylamide stereoprobes, the spirocycle acrylamides preferentially liganded specific cysteines on diverse protein classes. One compound termed ZL-12A promoted the degradation of the TFIIH helicase ERCC3. Interestingly, ZL-12A reacts with the same cysteine (C342) in ERCC3 as the natural product triptolide, which did not lead to ERCC3 degradation but instead causes collateral loss of RNA polymerases. ZL-12A and triptolide cross-antagonized one another's protein degradation profiles. Finally, we provide evidence that the antihypertension drug spironolactone─previously found to promote ERCC3 degradation through an enigmatic mechanism─also reacts with ERCC3_C342. Our findings thus describe monofunctional degraders of ERCC3 and highlight how covalent ligands targeting the same cysteine can produce strikingly different functional outcomes.


Asunto(s)
Acrilamida , Diterpenos , Fenantrenos , Humanos , Cisteína/química , Proteómica , Compuestos Epoxi
3.
Nat Chem Biol ; 19(11): 1320-1330, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783940

RESUMEN

Covalent chemistry represents an attractive strategy for expanding the ligandability of the proteome, and chemical proteomics has revealed numerous electrophile-reactive cysteines on diverse human proteins. Determining which of these covalent binding events affect protein function, however, remains challenging. Here we describe a base-editing strategy to infer the functionality of cysteines by quantifying the impact of their missense mutation on cancer cell proliferation. The resulting atlas, which covers more than 13,800 cysteines on more than 1,750 cancer dependency proteins, confirms the essentiality of cysteines targeted by covalent drugs and, when integrated with chemical proteomic data, identifies essential, ligandable cysteines in more than 160 cancer dependency proteins. We further show that a stereoselective and site-specific ligand targeting an essential cysteine in TOE1 inhibits the nuclease activity of this protein through an apparent allosteric mechanism. Our findings thus describe a versatile method and valuable resource to prioritize the pursuit of small-molecule probes with high function-perturbing potential.


Asunto(s)
Cisteína , Neoplasias , Humanos , Cisteína/química , Proteómica , Edición Génica , Proteoma/química , Neoplasias/genética , Proteínas Nucleares
4.
Mol Cell ; 83(10): 1725-1742.e12, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37084731

RESUMEN

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.


Asunto(s)
Proteómica , Factores de Transcripción , Humanos , Proteómica/métodos , Cisteína/metabolismo , Ligandos
6.
Nat Chem Biol ; 18(12): 1388-1398, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097295

RESUMEN

The Janus tyrosine kinase (JAK) family of non-receptor tyrosine kinases includes four isoforms (JAK1, JAK2, JAK3, and TYK2) and is responsible for signal transduction downstream of diverse cytokine receptors. JAK inhibitors have emerged as important therapies for immun(onc)ological disorders, but their use is limited by undesirable side effects presumed to arise from poor isoform selectivity, a common challenge for inhibitors targeting the ATP-binding pocket of kinases. Here we describe the chemical proteomic discovery of a druggable allosteric cysteine present in the non-catalytic pseudokinase domain of JAK1 (C817) and TYK2 (C838), but absent from JAK2 or JAK3. Electrophilic compounds selectively engaging this site block JAK1-dependent trans-phosphorylation and cytokine signaling, while appearing to act largely as 'silent' ligands for TYK2. Importantly, the allosteric JAK1 inhibitors do not impair JAK2-dependent cytokine signaling and are inactive in cells expressing a C817A JAK1 mutant. Our findings thus reveal an allosteric approach for inhibiting JAK1 with unprecedented isoform selectivity.


Asunto(s)
Cisteína , Proteómica , Transducción de Señal , Citocinas , Isoformas de Proteínas
7.
J Am Chem Soc ; 143(13): 5141-5149, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33783207

RESUMEN

Ligand-induced protein degradation has emerged as a compelling approach to promote the targeted elimination of proteins from cells by directing these proteins to the ubiquitin-proteasome machinery. So far, only a limited number of E3 ligases have been found to support ligand-induced protein degradation, reflecting a dearth of E3-binding compounds for proteolysis-targeting chimera (PROTAC) design. Here, we describe a functional screening strategy performed with a focused library of candidate electrophilic PROTACs to discover bifunctional compounds that degrade proteins in human cells by covalently engaging E3 ligases. Mechanistic studies revealed that the electrophilic PROTACs act through modifying specific cysteines in DCAF11, a poorly characterized E3 ligase substrate adaptor. We further show that DCAF11-directed electrophilic PROTACs can degrade multiple endogenous proteins, including FBKP12 and the androgen receptor, in human prostate cancer cells. Our findings designate DCAF11 as an E3 ligase capable of supporting ligand-induced protein degradation via electrophilic PROTACs.


Asunto(s)
Complejos de Ubiquitina-Proteína Ligasa/fisiología , Línea Celular Tumoral , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Receptores Androgénicos/metabolismo , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
8.
Cell ; 182(4): 1009-1026.e29, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32730809

RESUMEN

Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins, including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.


Asunto(s)
Cisteína/metabolismo , Ligandos , Linfocitos T/metabolismo , Acetamidas/química , Acetamidas/farmacología , Acrilamidas/química , Acrilamidas/farmacología , Células Cultivadas , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Activación de Linfocitos/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Proteolisis/efectos de los fármacos , Proteoma/química , Proteoma/metabolismo , Estereoisomerismo , Linfocitos T/citología , Linfocitos T/inmunología , Ubiquitina-Proteína Ligasas/metabolismo
9.
J Pharmacol Exp Ther ; 367(3): 494-508, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30305428

RESUMEN

Monoacylglycerol lipase (MGLL) is the primary degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). The first MGLL inhibitors have recently entered clinical development for the treatment of neurologic disorders. To support this clinical path, we report the pharmacological characterization of the highly potent and selective MGLL inhibitor ABD-1970 [1,1,1,3,3,3-hexafluoropropan-2-yl 4-(2-(8-oxa-3-azabicyclo[3.2.1]octan-3-yl)-4-chlorobenzyl)piperazine-1-carboxylate]. We used ABD-1970 to confirm the role of MGLL in human systems and to define the relationship between MGLL target engagement, brain 2-AG concentrations, and efficacy. Because MGLL contributes to arachidonic acid metabolism in a subset of rodent tissues, we further used ABD-1970 to evaluate whether selective MGLL inhibition would affect prostanoid production in several human assays known to be sensitive to cyclooxygenase inhibitors. ABD-1970 robustly elevated brain 2-AG content and displayed antinociceptive and antipruritic activity in a battery of rodent models (ED50 values of 1-2 mg/kg). The antinociceptive effects of ABD-1970 were potentiated when combined with analgesic standards of care and occurred without overt cannabimimetic effects. ABD-1970 also blocked 2-AG hydrolysis in human brain tissue and elevated 2-AG content in human blood without affecting stimulated prostanoid production. These findings support the clinical development of MGLL inhibitors as a differentiated mechanism to treat pain and other neurologic disorders.


Asunto(s)
Endocannabinoides/metabolismo , Inhibidores Enzimáticos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Analgésicos/farmacología , Animales , Antipruriginosos/farmacología , Ácidos Araquidónicos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular Tumoral , Inhibidores de la Ciclooxigenasa/farmacología , Glicéridos/metabolismo , Humanos , Hidrólisis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR , Células PC-3 , Dolor/tratamiento farmacológico , Dolor/metabolismo , Piperidinas/farmacología , Prostaglandinas/farmacología , Ratas , Ratas Sprague-Dawley , Roedores
10.
ACS Chem Biol ; 12(8): 2040-2050, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28636309

RESUMEN

Idiosyncratic liver toxicity represents an important problem in drug research and pharmacotherapy. Reactive drug metabolites that modify proteins are thought to be a principal factor in drug-induced liver injury. Here, we describe a quantitative chemical proteomic method to identify the targets of reactive drug metabolites in vivo. Treating mice with clickable analogues of four representative hepatotoxic drugs, we demonstrate extensive covalent binding that is confined primarily to the liver. Each drug exhibited a distinct target profile that, in certain cases, showed strong enrichment for specific metabolic pathways (e.g., lipid/sterol pathways for troglitazone). Site-specific proteomics revealed that acetaminophen reacts with high stoichiometry with several conserved, functional (seleno)cysteine residues throughout the liver proteome. Our findings thus provide an advanced experimental framework to characterize the proteomic reactivity of drug metabolites in vivo, revealing target profiles that may help to explain mechanisms and identify risk factors for drug-induced liver injury.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas , Sistemas de Liberación de Medicamentos , Hepatocitos/efectos de los fármacos , Proteogenómica , Acetaminofén/química , Acetaminofén/farmacología , Animales , Hígado/lesiones , Ratones , Estructura Molecular
11.
Mol Cell Proteomics ; 10(5): M110.001636, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20943600

RESUMEN

The obligate intracellular parasite pathogen Plasmodium falciparum is the causative agent of malaria, a disease that results in nearly one million deaths per year. A key step in disease pathology in the human host is the parasite-mediated rupture of red blood cells, a process that requires extensive proteolysis of a number of host and parasite proteins. However, only a relatively small number of specific proteolytic processing events have been characterized. Here we describe the application of the Protein Topography and Migration Analysis Platform (PROTOMAP) (Dix, M. M., Simon, G. M., and Cravatt, B. F. (2008) Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134, 679-691; Simon, G. M., Dix, M. M., and Cravatt, B. F. (2009) Comparative assessment of large-scale proteomic studies of apoptotic proteolysis. ACS Chem. Biol. 4, 401-408) technology to globally profile proteolytic events occurring over the last 6-8 h of the intraerythrocytic cycle of P. falciparum. Using this method, we were able to generate peptographs for a large number of proteins at 6 h prior to rupture as well as at the point of rupture and in purified merozoites after exit from the host cell. These peptographs allowed assessment of proteolytic processing as well as changes in both protein localization and overall stage-specific expression of a large number of parasite proteins. Furthermore, by using a highly selective inhibitor of the cysteine protease dipeptidyl aminopeptidase 3 (DPAP3) that has been shown to be a key regulator of host cell rupture, we were able to identify specific substrates whose processing may be of particular importance to the process of host cell rupture. These results provide the first global map of the proteolytic processing events that take place as the human malarial parasite extracts itself from the host red blood cell. These data also provide insight into the biochemical events that take place during host cell rupture and are likely to be valuable for the study of proteases that could potentially be targeted for therapeutic gain.


Asunto(s)
Eritrocitos/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Proteoma/metabolismo , Programas Informáticos , Secuencia de Aminoácidos , Técnicas de Cultivo de Célula , Inhibidores de Cisteína Proteinasa/farmacología , Citoplasma/química , Citoplasma/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/antagonistas & inhibidores , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Eritrocitos/metabolismo , Eritrocitos/patología , Interacciones Huésped-Parásitos , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Merozoítos/fisiología , Peso Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/química
12.
Nature ; 468(7325): 790-5, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21085121

RESUMEN

Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here we describe a proteomics method to profile quantitatively the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyper-reactivity was a rare feature among cysteines and it was found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyper-reactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and is involved in iron-sulphur protein biogenesis. We also demonstrate that quantitative reactivity profiling can form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs.


Asunto(s)
Cisteína/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteoma/química , Proteoma/metabolismo , Animales , Biocatálisis , Línea Celular Tumoral , Secuencia Conservada , Cisteína/análisis , Humanos , Hidrolasas/química , Hidrolasas/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Hígado/metabolismo , Ratones , Miocardio/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Oxidación-Reducción , Ingeniería de Proteínas , Hidrolisados de Proteína , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteómica/métodos , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
PLoS One ; 5(1): e8792, 2010 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-20098695

RESUMEN

BACKGROUND: Obesity is a worldwide epidemic, and severe obesity is a risk factor for many diseases, including diabetes, heart disease, stroke, and some cancers. Endocannabinoid system (ECS) signaling in the brain and peripheral tissues is activated in obesity and plays a role in the regulation of body weight. The main research question here was whether quantitative measurement of plasma endocannabinoids, anandamide, and related N-acylethanolamines (NAEs), combined with genotyping for mutations in fatty acid amide hydrolase (FAAH) would identify circulating biomarkers of ECS activation in severe obesity. METHODOLOGY/PRINCIPAL FINDINGS: Plasma samples were obtained from 96 severely obese subjects with body mass index (BMI) of > or = 40 kg/m(2), and 48 normal weight subjects with BMI of < or = 26 kg/m(2). Triple-quadrupole mass spectroscopy methods were used to measure plasma ECS analogs. Subjects were genotyped for human FAAH gene mutations. The principal analysis focused on the FAAH 385 C-->A (P129T) mutation by comparing plasma ECS metabolite levels in the FAAH 385 minor A allele carriers versus wild-type C/C carriers in both groups. The main finding was significantly elevated mean plasma levels of anandamide (15.1+/-1.4 pmol/ml) and related NAEs in study subjects that carried the FAAH 385 A mutant alleles versus normal subjects (13.3+/-1.0 pmol/ml) with wild-type FAAH genotype (p = 0.04), and significance was maintained after controlling for BMI. CONCLUSIONS/SIGNIFICANCE: Significantly increased levels of the endocannabinoid anandamide and related NAEs were found in carriers of the FAAH 385 A mutant alleles compared with wild-type FAAH controls. This evidence supports endocannabinoid system activation due to the effect of FAAH 385 mutant A genotype on plasma AEA and related NAE analogs. This is the first study to document that FAAH 385 A mutant alleles have a direct effect on elevated plasma levels of anandamide and related NAEs in humans. These biomarkers may indicate risk for severe obesity and may suggest novel ECS obesity treatment strategies.


Asunto(s)
Biomarcadores/sangre , Moduladores de Receptores de Cannabinoides/sangre , Endocannabinoides , Obesidad/sangre , Anciano , Amidohidrolasas/genética , Femenino , Genotipo , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Mutación , Polimorfismo de Nucleótido Simple , Índice de Severidad de la Enfermedad
14.
ACS Chem Biol ; 4(6): 401-8, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19415908

RESUMEN

Two proteomic methods were recently introduced to globally map proteolytic cleavage events in biological systems, one that characterized proteolyzed proteins by differential gel migration (PROTOMAP) and the other by enzymatic tagging and enrichment of the nascent N-terminal peptides generated by proteolysis (Subtiligase). Both technologies were applied to apoptosis, and each uncovered hundreds of novel proteolytic events. An initial survey, however, revealed only minimal overlap in the two data sets. In this article, we perform an in-depth comparative analysis of the PROTOMAP and Subtiligase results that assimilates the complementary information acquired by each method. This analysis uncovered substantial agreement between the PROTOMAP and Subtiligase data sets, which in integrated form yield a highly enriched portrait of the proteome-wide impact of proteolysis in apoptosis. We discuss the respective strengths of each proteomic method and the potential for these technologies to expand the scope and sensitivity of large-scale studies of proteolysis in biological systems.


Asunto(s)
Apoptosis , Péptido Sintasas/metabolismo , Proteínas/análisis , Proteínas/metabolismo , Proteómica/métodos , Análisis de Secuencia de Proteína/métodos , Subtilisinas/metabolismo , Bases de Datos de Proteínas , Espectrometría de Masas , Péptidos/química , Proteínas/química
15.
Nat Chem Biol ; 4(7): 405-7, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18488014

RESUMEN

Insights into the proteome reactivity of electrophiles are crucial for designing activity-based probes for enzymes lacking cognate affinity labels. Here, we show that different classes of carbon electrophiles exhibit markedly distinct amino acid labeling profiles in proteomes, ranging from selective reactivity with cysteine to adducts with several amino acids. These data specify electrophilic chemotypes with restricted and permissive reactivity profiles to guide the design of next-generation functional proteomics probes.


Asunto(s)
Aminoácidos/química , Cisteína Endopeptidasas/química , Sondas Moleculares/química , Proteoma/química , Proteómica/métodos , Serina Endopeptidasas/química , Sensibilidad y Especificidad , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA