Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cureus ; 16(6): e61705, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38975365

RESUMEN

BACKGROUND: Measurable/minimal residual disease (MRD) is considered the single most powerful high-risk factor in acute leukemia, including T-cell acute lymphoblastic leukemia (T-ALL). In this study, we evaluated the impact of flow cytometry (FC)-based detection of MRD on survival outcomes in pediatrics, adolescents, and young adults (AYA) with T-ALL. METHODS: We included 139 patients, 88 pediatric patients between the ages of one and 14 years, and 51 AYA patients between 15 and 39 years of age, over a period of three years and were treated with the Indian Collaborative Childhood Leukemia Group (ICiCLe) protocol. MRD assessment was performed on post-induction (PI) bone marrow aspirate samples using a 10-color 11-antibody MRD panel on a Gallios instrument (Beckman Coulter, Miami, FL, USA). MRD value > 0.01% was considered positive. PI-MRD status was available in 131 patients. RESULTS: The five-year event-free survival (5-year EFS) in PI-MRD positive patients was inferior to those of negative patients (13.56% vs 79.06%), which was statistically significant (P < 0.001). However, the five-year overall survival (5-year OS) did not show any statistically significant difference between PI-MRD positive and negative T-ALL patients (92.93% vs 94.28%). The hazard ratio (HR) for 5-year EFS and MRD positivity was 8.03 (p-value < 0.0001). HR for 5-year EFS and early T-cell precursor ALL (ETP-ALL) was 2.63 (p = -0.02). CONCLUSIONS: PI-MRD detected using FC is a strong predictive factor of inferior survival outcomes in pediatrics, AYA patients with T-ALL. PI-MRD positivity can be used to modify the treatment of T-ALL patients, especially in resource-constrained developing countries where molecular tests are not widely available.

2.
Med Oncol ; 41(5): 95, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526657

RESUMEN

5-Fluorouracil (5-FU) is an anticancer agent belonging to BCS Class III that exhibits poor release characteristics and low retention in the biological system. The main objective of this investigation was to develop a drug delivery system, i.e., Nanostructure Lipid Carriers (NLCs) loaded with 5-FU to prolong its biological retention through 5-FU-loaded NLCs (5-FUNLC) were designed to manipulate physicochemical characteristics and assessment of in vitro and in vivo performance. The developed NLCs underwent comprehensive characterization, including assessments for particle size, zeta potential, morphological evaluation, and FT-IR spectroscopy. Additionally, specific evaluations were conducted for 5-FUNLCs, encompassing analyses for encapsulation efficiency of the drug, release characteristics in PBS at pH 6.8, and stability study. The lipophilic character of 5-FUNLC was confirmed through the measurement of the partition coefficient (log P). 5-FUNLCs were observed as spherical-shaped particles with a mean size of 300 ± 25 nm. The encapsulation efficiency was determined to be 89%, indicating effective drug loading within the NLCs. Furthermore, these NLCs exhibited a sustained release nature lasting up to 3-4 h, indicating their potential for controlled drug release over time. Lipid components were biocompatible with the 5-FU to determine thermal transition temperature and show good stability for 30 days. Additionally, an in vitro hemolysis study that confirmed the system did not cause any destruction to the RBCs during intravenous administration. The drug's gut permeability was assessed utilizing the optimized 5-FUNLC (F2) in comparison to 5-FU through the intestine or gut sac model (in the apical to basolateral direction, A → B). The permeability coefficient was measured as 4.91 × 10-5 cm/h with a significant difference. Additionally, the antioxidant potential of the NLCs was demonstrated through the DPPH method. The NLCs' performance was further assessed through in vivo pharmacokinetic studies on Wistar Rats, resulting in a 1.5-fold enhancement in their activity compared to free 5-FU. These NLCs offer improved drug solubility and sustained release, which collectively contribute to enhanced therapeutic outcomes and modulate bioavailability. The study concludes by highlighting the potential of 5-FUNLC as an innovative and efficient drug delivery system. The findings suggest that further preclinical investigations are warranted, indicating a promising avenue for the development of more effective and well-tolerated treatments for cancer.


Asunto(s)
Portadores de Fármacos , Nanoestructuras , Ratas , Animales , Liberación de Fármacos , Portadores de Fármacos/química , Fluorouracilo , Preparaciones de Acción Retardada , Disponibilidad Biológica , Ratas Wistar , Espectroscopía Infrarroja por Transformada de Fourier , Hemólisis , Lípidos , Nanoestructuras/química , Permeabilidad
3.
PNAS Nexus ; 3(2): pgae011, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38328782

RESUMEN

T-acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy characterized by the abnormal proliferation of immature T-cell precursors. Despite advances in immunophenotypic classification, understanding the molecular landscape and its impact on patient prognosis remains challenging. In this study, we conducted comprehensive RNA sequencing in a cohort of 35 patients with T-ALL to unravel the intricate transcriptomic profile. Subsequently, we validated the prognostic relevance of 23 targets, encompassing (i) protein-coding genes-BAALC, HHEX, MEF2C, FAT1, LYL1, LMO2, LYN, and TAL1; (ii) epigenetic modifiers-DOT1L, EP300, EML4, RAG1, EZH2, and KDM6A; and (iii) long noncoding RNAs (lncRNAs)-XIST, PCAT18, PCAT14, LINC00202, LINC00461, LINC00648, ST20, MEF2C-AS1, and MALAT1 in an independent cohort of 99 patients with T-ALL. Principal component analysis revealed distinct clusters aligning with immunophenotypic subtypes, providing insights into the molecular heterogeneity of T-ALL. The identified signature genes exhibited associations with clinicopathologic features. Survival analysis uncovered several independent predictors of patient outcomes. Higher expression of MEF2C, BAALC, HHEX, and LYL1 genes emerged as robust indicators of poor overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS). Higher LMO2 expression was correlated with adverse EFS and RFS outcomes. Intriguingly, increased expression of lncRNA ST20 coupled with RAG1 demonstrated a favorable prognostic impact on OS, EFS, and RFS. Conclusively, several hitherto unreported associations of gene expression patterns with clinicopathologic features and prognosis were identified, which may help understand T-ALL's molecular pathogenesis and provide prognostic markers.

4.
Heliyon ; 9(9): e19890, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809974

RESUMEN

Goat milk gels (GMGs) are popular food due to their high water content, low-calorie density, appealing taste, texture enhancers, stability, and satiety-enhancing characteristics, making them ideal for achieving food security and zero hunger. The GMGs were optimized using the central composite design matrix of response surface methodology using goat milk powder (35-55 g), whole milk powder (10-25 g), and potato powder (10-15 g) as independent variables. In contrast, complex modulus, flow stress, and forward extrudability were chosen as dependent variables. The maximum value of complex modulus 33670.9 N, good flow stress 7863.6 N, and good extrudability 65.32 N was achieved under optimal conditions. The optimized goat milk gel was fortified with ascorbic acid-coated iron oxide nanoparticle (magnetic nature) decorated alginate-chitosan nanoparticles (AA-MNP@CANPs), making it nutritionally rich in an economically feasible way-the decorated AA-MNP@CANPs characterized for size, shape, crystallinity, surface charge, and optical characteristics. Finally, the optimized fortified smart GMGs were further characterized via Scanning electron microscopy, Rheology, Texture profile analysis, Fourier transforms infrared (FTIR), and X-Ray Diffraction (XRD). The fortified smart GMGs carry more nutritional diversity, targeted iron delivery, and the fundamental sustainability development goal of food security.

5.
J Exp Clin Cancer Res ; 42(1): 231, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670323

RESUMEN

BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common pediatric hematological malignancy, with ETV6::RUNX1 being the most prevalent translocation whose exact pathogenesis remains unclear. IGF2BP1 (Insulin-like Growth Factor 2 Binding Protein 1) is an oncofetal RNA binding protein seen to be specifically overexpressed in ETV6::RUNX1 positive B-ALL. In this study, we have studied the mechanistic role of IGF2BP1 in leukemogenesis and its synergism with the ETV6::RUNX1 fusion protein. METHODS: Gene expression was analyzed from patient bone marrow RNA using Real Time RT-qPCR. Knockout cell lines were created using CRISPR-Cas9 based lentiviral vectors. RNA-Seq and RNA Immunoprecipitation sequencing (RIP-Seq) after IGF2BP1 pulldown were performed using the Illumina platform. Mouse experiments were done by retroviral overexpression of donor HSCs followed by lethal irradiation of recipients using a bone marrow transplant model. RESULTS: We observed specific overexpression of IGF2BP1 in ETV6::RUNX1 positive patients in an Indian cohort of pediatric ALL (n=167) with a positive correlation with prednisolone resistance. IGF2BP1 expression was essential for tumor cell survival in multiple ETV6::RUNX1 positive B-ALL cell lines. Integrated analysis of transcriptome sequencing after IGF2BP1 knockout and RIP-Seq after IGF2BP1 pulldown in Reh cell line revealed that IGF2BP1 targets encompass multiple pro-oncogenic signalling pathways including TNFα/NFκB and PI3K-Akt pathways. These pathways were also dysregulated in primary ETV6::RUNX1 positive B-ALL patient samples from our center as well as in public B-ALL patient datasets. IGF2BP1 showed binding and stabilization of the ETV6::RUNX1 fusion transcript itself. This positive feedback loop led to constitutive dysregulation of several oncogenic pathways. Enforced co-expression of ETV6::RUNX1 and IGF2BP1 in mouse bone marrow resulted in marrow hypercellularity which was characterized by multi-lineage progenitor expansion and strong Ki67 positivity. This pre-leukemic phenotype confirmed their synergism in-vivo. Clonal expansion of cells overexpressing both ETV6::RUNX1 and IGF2BP1 was clearly observed. These mice also developed splenomegaly indicating extramedullary hematopoiesis. CONCLUSION: Our data suggest a combined impact of the ETV6::RUNX1 fusion protein and RNA binding protein, IGF2BP1 in activating multiple oncogenic pathways in B-ALL which makes IGF2BP1 and these pathways as attractive therapeutic targets and biomarkers.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Ratones , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Ratones Noqueados , Fosfatidilinositol 3-Quinasas , Proteína ETS de Variante de Translocación 6
6.
Int J Biol Macromol ; 253(Pt 4): 126886, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37709228

RESUMEN

Zinc-based nanostructures are known for their numerous potential biomedical applications. In this context, the biosynthesis of nanostructures using plant extracts has become a more sustainable and promising alternative to effectively replace conventional chemical methods while avoiding their toxic impact. In this study, following a low-temperature calcination process, a green synthesis of Zn-hydroxide-based nanostructure has been performed using an aqueous extract derived from the leaves of Litchi chinensis, which is employed as a lignocellulose waste biomass known to possess a variety of phytocompounds. The biogenic preparation of Zn-hydroxide based nanostructures is enabled by bioactive compounds present in the leaf extract, which act as reducing and capping agents. In order to evaluate its physicochemical characteristics, the produced Zn-hydroxide-based nanostructure has been subjected to several characterization techniques. Further, the multifunctional properties of the prepared Zn-hydroxide-based nanostructure have been evaluated for antioxidant, antimicrobial, and anticancer activity. The prepared nanostructure showed antibacterial efficacy against Bacillus subtilis and demonstrated its anti-biofilm activity as evaluated through the Congo red method. In addition, the antioxidant activity of the prepared nanostructure has been found to be dose-dependent, wherein 91.52 % scavenging activity could be recorded at 200 µg/ml, with an IC50 value of 45.22 µg/ml, indicating the prepared nanostructure has a high radical scavenging activity. Besides, the in vitro cytotoxicity investigation against HepG2 cell lines explored that the as-prepared nanostructure exhibited a higher cytotoxic effect and 73.21 % cell inhibition could be noticed at 25.6 µg/ml with an IC50 of 2.58 µg/ml. On the contrary, it was found to be significantly lower in the case of HEK-293 cell lines, wherein ~47.64 % inhibition could be noticed at the same concentration. These findings might be further extended to develop unique biologically derived nanostructures that can be extensively evaluated for various biomedical purposes.


Asunto(s)
Litchi , Nanopartículas del Metal , Nanoestructuras , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Litchi/química , Biomasa , Células HEK293 , Antibacterianos/farmacología , Antibacterianos/química , Hidróxidos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Nanopartículas del Metal/química
7.
Biosci Rep ; 43(9)2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37531267

RESUMEN

Resistance to therapy in esophageal squamous cell carcinoma (ESCC) is a critical clinical problem and identification of novel therapeutic targets is highly warranted. Dipeptidyl peptidase III (DPP3) is a zinc-dependent aminopeptidase and functions in the terminal stages of the protein turnover. Several studies have reported overexpression and oncogenic functions of DPP3 in numerous malignancies. The present study aimed to determine the expression pattern and functional role of DPP3 in ESCC. DPP3 expression was assessed in normal and tumor tissues using quantitative real-time (qRT)-PCR and corroborated with ESCC gene expression datasets from Gene Expression Omnibus (GEO) and The cancer genome atlas (TCGA). DPP3 stable knockdown was performed in ESCC cells by shRNA and its effect on cell proliferation, migration, cell cycle, apoptosis, and activation of nuclear factor erythroid 2-related factor 2 (NRF2) pathway was assessed. The results suggested that DPP3 is overexpressed in ESCC and its knockdown leads to reduced proliferation, increased apoptosis, and inhibited migration of ESCC cells. Additionally, DPP3 knockdown leads to down-regulation of the NRF2 pathway proteins, such as NRF2, G6PD, and NQO1 along with increased sensitivity toward oxidative stress-induced cell death and chemotherapy. Conclusively, these results demonstrate critical role of DPP3 in ESCC and DPP3/NRF2 axis may serve as an attractive therapeutic target against chemoresistance in this malignancy.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/patología , Factor 2 Relacionado con NF-E2/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Estrés Oxidativo , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética
8.
Cell Mol Neurobiol ; 43(7): 3753-3765, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37543966

RESUMEN

The POLD4 gene encodes a subunit (δ4) of DNA polymerase delta, which is a key enzyme involved in DNA replication and repair. Recent studies have suggested that POLD4 plays a crucial role in developing certain cancers. However, there is a lack of knowledge regarding the role of POLD4 in the context of glioblastoma (GBM). Therefore, in this study we have used various cancer bioinformatics tools to explore the role of POLD4 in glioblastoma. Data from various sources were accessed to analyze POLD4 gene expression and estimate tumor-infiltrating immune cells in glioblastoma. Methylation data were retrieved using the MEXPRESS web browser and analyzed. UALCAN webserver was used to analyze the protein expression of POLD4. Gene correlation and pathway enrichment analysis were performed using cBioPortal and GSEA software, respectively. Afterward, survival analysis was performed. POLD4 was significantly upregulated in glioblastoma at both gene and protein levels in GBM, and ROC curve analysis revealed it as a potential biomarker in glioblastoma. GSEA analysis of TCGA-GBM pan-cancer study exhibited that POLD4 expression was associated with critical pathways, such as interferon-gamma response, G2M checkpoint, inflammatory response, E2F targets, EMT transition, and KRAS signaling pathways. Furthermore, POLD4 expression was positively correlated with DNA methylation at 3 CpG sites, including Cg16509978, with a Pearson correlation coefficient value of 0.398 (p-value ≤ 0.01), while the promoter region had a positive correlation but was not significant. In addition, POLD4 is significantly linked with poor OS, PFS, and DFS. We also found association of POLD4 expression with altered immune cell infiltration. In conclusion, POLD4 is significantly upregulated in glioblastoma and may be used as a potential diagnostic or prognostic biomarker for GBM patients. However, to establish the same a large cohort study is needed. Using TCGA data and various cancer bioinformatics tools mentioned above we observed very high level of gene and protein expression of POLD4 in glioblastoma patients. The expression of POLD4 was significantly correlated with inflammatory and oncogenic pathways and it also has a significant correlation with adverse outcome in patients with glioblastoma.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Relevancia Clínica , Metilación de ADN/genética , Análisis de Supervivencia , Biomarcadores
9.
Am J Cancer Res ; 13(6): 2452-2470, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424808

RESUMEN

Overexpression of cytokine receptor-like factor 2 (CRLF2) resulting from its genomic rearrangement is the most frequent genetic alteration found in Philadelphia chromosome-like (Ph-like) B-cell acute lymphoblastic leukemia (B-ALL), a high-risk leukemia. Detection of CRLF2 expression by multiparameter flow cytometry has been proposed as a screening tool for the identification of Ph-like B-ALL. However, the prognostic relevance of flow cytometric expression of CRLF2 in pediatric B-ALL is not very clear. Additionally, its association with common copy number alterations (CNA) has not been studied in detail. Hence, in this study, we prospectively evaluated the flow cytometric expression of CRLF2 in 256 pediatric B-ALL patients and determined its association with molecular features such as common CNAs detected using Multiplex ligation-dependent probe amplification and mutations in CRLF2, JAK2 and IL7RA genes. Further, its association with clinicopathological features including patient outcome was assessed. We found that 8.59% (22/256) pediatric B-ALL patients were CRLF2-positive at diagnosis. Among CNAs, CRLF2 positivity was associated with presence of PAX5 alteration (P=0.041). JAK2 and IL-7R mutations were found in 9% and 13.6% CRLF2-positive patients, respectively. IGH::CRLF2 or P2RY8::CRLF2 fusions were each found in 1/22 individuals. CRLF2-positive patients were found to have inferior overall (hazard ratio (HR) =4.39, P=0.006) and event free survival (HR=2.62, P=0.045), independent to other clinical features. Furthermore, concomitant CNA of IKZF1 in CRLF2 positive patients was associated with a greater hazard for poor overall and event free survival, compared to patients without these alterations or presence of any one of them. Our findings demonstrate that the surface CRLF2 expression in association with IKZF1 copy number alteration can be used to risk stratify pediatric B-ALL patients.

10.
Environ Res ; 235: 116573, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37437865

RESUMEN

Cancer is characterized by uncontrolled cell growth, disrupted regulatory pathways, and the accumulation of genetic mutations. These mutations across different types of cancer lead to disruptions in signaling pathways and alterations in protein expression related to cellular growth and proliferation. This review highlights the AKT signaling cascade and the retinoblastoma protein (pRb) regulating cascade as promising for novel nanotheranostic interventions. Through synergizing state-of-the-art gene editing tools like the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system with nanomaterials and targeting AKT, there is potential to enhance cancer diagnostics significantly. Furthermore, the integration of modified CAR-T cells into multifunctional nanodelivery systems offers a promising approach for targeted cancer inhibition, including the eradication of cancer stem cells (CSCs). Within the context of highly aggressive and metastatic Triple-negative Breast Cancer (TNBC), this review specifically focuses on devising innovative nanotheranostics. For both pre-clinical and post-clinical TNBC detection, the utilization of the CRISPR-Cas system, guided by RNA (gRNA) and coupled with a fluorescent reporter specifically designed to detect TNBC's mutated sequence, could be promising. Additionally, a cutting-edge approach involving the engineering of TNBC-specific iCAR and syn-Notch CAR T-cells, combined with the co-delivery of a hybrid polymeric nano-liposome encapsulating a conditionally replicative adenoviral vector (CRAdV) against CSCs, could present an intriguing intervention strategy. This review thus paves the way for exciting advancements in the field of nanotheranostics for the treatment of TNBC and beyond.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Edición Génica , Linfocitos T/metabolismo
11.
Front Med Technol ; 5: 1236107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521721

RESUMEN

Nanotechnology has become one of the most rapid, innovative, and adaptable sciences in modern science and cancer therapy. Traditional chemotherapy has limits owing to its non-specific nature and adverse side effects on healthy cells, and it remains a serious worldwide health issue. Because of their capacity to specifically target cancer cells and deliver therapeutic chemicals directly to them, nanoparticles have emerged as a viable strategy for cancer therapies. Nanomaterials disclose novel properties based on size, distribution, and shape. Biosynthesized or biogenic nanoparticles are a novel technique with anti-cancer capabilities, such as triggering apoptosis in cancer cells and slowing tumour growth. They may be configured to deliver medications or other therapies to specific cancer cells or tumour markers. Despite their potential, biosynthesized nanoparticles confront development obstacles such as a lack of standardisation in their synthesis and characterization, the possibility of toxicity, and their efficiency against various forms of cancer. The effectiveness and safety of biosynthesized nanoparticles must be further investigated, as well as the types of cancer they are most successful against. This review discusses the promise of biosynthesized nanoparticles as a novel approach for cancer therapeutics, as well as their mode of action and present barriers to their development.

12.
Am J Blood Res ; 13(1): 28-43, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937459

RESUMEN

BACKGROUND: Acute myeloid leukemia with normal cytogenetics (CN-AML) is the largest group of AML patients with very heterogenous patient outcomes. The revised World Health Organization classification of the hematolymphoid tumours, 2022, has incorporated AML with Nucleophosphmin1 (NPM1) and CCAAT/enhancer binding protein-alpha (CEBPA) mutations as distinct entities. Despite the existing evidence of the prognostic relevance of FMS-like tyrosine kinase-3 internal tandem duplication (FLT3-ITD) in AML, it has not been included in the revised classification. METHOD: In this prospective study, we determined the prevalence of NPM1, CEBPA, and FLT3 gene mutations in 151 de novo CN-AML adult patients (age ≥18 years) in a tertiary care hospital in north India. Additionally, the prognostic relevance of these mutations was also evaluated. RESULTS: NPM1, FLT3-ITD, and CEBPA mutations were found in 33.11%, 23.84%, and 15.77% of CN-AML patients, respectively. CEBPA mutations were found at 3 domains: transactivation domain 1 (TAD1) in 10 (6.62%), transactivation domain 2 (TAD2) in 5 (3.31%), and basic leucine zipper domain (bZIP) in 11 (7.82%) patients. Patients with NPM1 mutation had better clinical remission rate (CR) (P=0.003), event-free survival (P=0.0014), and overall survival (OS) (P=0.0017). However, FLT3-ITD and CEBPA mutations did not show any association with CR (P=0.404 and 0.92, respectively). Biallelic CEBPA mutations were found in 12 (7.95%) patients and were associated with better OS (P=0.043). CONCLUSIONS: These findings indicate that NPM1 and CEBPA mutations can be precisely used for risk stratification in CN-AML patients.

13.
ACS Omega ; 8(1): 10-41, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643475

RESUMEN

Carcinoma of the lungs is among the most menacing forms of malignancy and has a poor prognosis, with a low overall survival rate due to delayed detection and ineffectiveness of conventional therapy. Therefore, drug delivery strategies that may overcome undesired damage to healthy cells, boost therapeutic efficacy, and act as imaging tools are currently gaining much attention. Advances in material science have resulted in unique nanoscale-based theranostic agents, which provide renewed hope for patients suffering from lung cancer. Nanotechnology has vastly modified and upgraded the existing techniques, focusing primarily on increasing bioavailability and stability of anti-cancer drugs. Nanocarrier-based imaging systems as theranostic tools in the treatment of lung carcinoma have proven to possess considerable benefits, such as early detection and targeted therapeutic delivery for effectively treating lung cancer. Several variants of nano-drug delivery agents have been successfully studied for therapeutic applications, such as liposomes, dendrimers, polymeric nanoparticles, nanoemulsions, carbon nanotubes, gold nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, hydrogels, and micelles. In this Review, we present a comprehensive outline on the various types of overexpressed receptors in lung cancer, as well as the various targeting approaches of nanoparticles.

14.
Luminescence ; 38(7): 1347-1357, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36584881

RESUMEN

Rare earth metals play a conspicuous role in magnetic resonance imaging (MRI) for detecting cancerous cells. The alkali metal potassium is a neurotransmitter in the sodium-potassium pump in biomedical sciences. This unique property of rare earth metals and potassium drew our attention to carry forward this study. Therefore, in this work, previously synthesized potassium (K) complexes formed by the reflux of 4-N,N-dimethylaminobenzoic acid (DBA) and potassium hydroxide in methanol, and named [(µ2-4-N,N-dimethylaminobenzoate-κO)(µ2-4-N,N-dimethylaminobenzoic acid-κO)(4-N,N-dimethylaminobenzoic acid-κO) potassium(I) coordination polymer)] were treated hydrothermally with La2 O3 nanomaterials to obtain a nanohybrid La2 O3 /K-complex. After that, the K-complex was analyzed using single-crystal X-ray diffraction and 1 H and 13 C NMR spectroscopy. In addition, the structural and morphological properties of the as-prepared nanostructured La2 O3 /K-complex were also characterized, which involved an investigation using X-ray diffraction (XRD)spectroscopy, Fourier transform infrared (FTIR) spectroscopy, atomic force spectroscopy (AFM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) analysis. After this, the electrochemical redox behaviour of the synthesized nanohybrid material was studied using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Therefore, the results from these studies revealed that the as-prepared material was a La2 O3 /K-complex that has a promising future role in sensing various analytes, as it showed effective electrocatalytic behaviour.


Asunto(s)
Metales de Tierras Raras , Nanoestructuras , Oxidación-Reducción , Microscopía Electrónica de Transmisión , Potasio
15.
Luminescence ; 38(7): 1087-1101, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36398418

RESUMEN

Air pollution is a severe concern globally as it disturbs the health conditions of living beings and the environment because of the discharge of acetone molecules. Metal oxide semiconductor (MOS) nanomaterials are crucial for developing efficient sensors because of their outstanding chemical and physical properties, empowering the inclusive developments in gas sensor productivity. This review presents the ZnO nanostructure state of the art and notable growth, and their structural, morphological, electronic, optical, and acetone-sensing properties. The key parameters, such as response, gas detection limit, sensitivity, reproducibility, response and recovery time, selectivity, and stability of the acetone sensor, have been discussed. Furthermore, gas-sensing mechanism models based on MOS for acetone sensing are reported and discussed. Finally, future possibilities and challenges for MOS (ZnO)-based gas sensors for acetone detection have also been explored.


Asunto(s)
Líquidos Corporales , Nanoestructuras , Óxido de Zinc , Acetona , Reproducibilidad de los Resultados , Gases Nobles , Óxidos
16.
Hematol Oncol ; 40(4): 577-587, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35644022

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease, characterized by an abnormal transformation of T cells into highly proliferative leukemic lymphoblasts. Identification of common genetic alterations has provided promising opportunities for better risk stratification in T-ALL. Current treatment in T-ALL still poses the major challenge of integrating the knowledge of molecular alterations in the clinical setting. We utilized the Multiplex Ligation Dependent Probe Amplification (MLPA) method to determine the frequency of common copy number alterations (CNAs) in 128 newly diagnosed T-ALL patients. We also studied the association of these CNAs with patient's clinical characteristics and survival. The highest frequency of deletion was observed in CDKN2A (59.38%), followed by CDKN2B (46.88%), LMO1 (37.5%), and MTAP (28.12%). PTPN2 (22.66%), PHF6 (14.06%), and MYB (14.06%) had the highest number of duplication events. A total of 89.06% patients exhibited CNAs. STIL::TAL1, NUP214::ABL1, and LMO2::RAG2 fusions were observed in 5.47%, 3.12%, and 0.78% of patients, respectively. CDKN2A, CDKN2B, and PTPN2 gene deletions were mainly observed in pediatric patients, while CNAs of NF1 and SUZ12 were observed more frequently in adults. In pediatric patients, alterations in CDKN2B, CASP8AP2, and AHI1 were associated with poor prognosis, while SUZ12 and NF1 CNAs were associated with favorable prognosis. In adult patients, ABL1 CNA emerged as an independent indicator of poor prognosis. The observed molecular heterogeneity in T-ALL may provide the basis for variations observed in clinical response in T-ALL and MLPA based CNA detection may help in risk stratification of these patients.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Niño , Variaciones en el Número de Copia de ADN , Humanos , Mutación , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Pronóstico , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética
17.
J Lipid Res ; 63(6): 100224, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35568254

RESUMEN

Anabolic metabolism of carbon in mammals is mediated via the one- and two-carbon carriers S-adenosyl methionine and acetyl-coenzyme A. In contrast, anabolic metabolism of three-carbon units via propionate has not been shown to extensively occur. Mammals are primarily thought to oxidize the three-carbon short chain fatty acid propionate by shunting propionyl-CoA to succinyl-CoA for entry into the TCA cycle. Here, we found that this may not be absolute as, in mammals, one nonoxidative fate of propionyl-CoA is to condense to two three-carbon units into a six-carbon trans-2-methyl-2-pentenoyl-CoA (2M2PE-CoA). We confirmed this reaction pathway using purified protein extracts provided limited substrates and verified the product via LC-MS using a synthetic standard. In whole-body in vivo stable isotope tracing following infusion of 13C-labeled valine at steady state, 2M2PE-CoA was found to form via propionyl-CoA in multiple murine tissues, including heart, kidney, and to a lesser degree, in brown adipose tissue, liver, and tibialis anterior muscle. Using ex vivo isotope tracing, we found that 2M2PE-CoA also formed in human myocardial tissue incubated with propionate to a limited extent. While the complete enzymology of this pathway remains to be elucidated, these results confirm the in vivo existence of at least one anabolic three- to six-carbon reaction conserved in humans and mice that utilizes propionate.


Asunto(s)
Carbono , Propionatos , Acetilcoenzima A/metabolismo , Acilcoenzima A/metabolismo , Animales , Carbono/metabolismo , Hígado/metabolismo , Ratones , Oxidación-Reducción
18.
BMC Biol ; 20(1): 93, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35491423

RESUMEN

BACKGROUND: Estriol (E3) is a steroid hormone formed only during pregnancy in primates including humans. Although E3 is synthesized at large amounts through a complex pathway involving the fetus and placenta, it is not required for the maintenance of pregnancy and has classically been considered virtually inactive due to associated very weak canonical estrogen signaling. However, estrogen exposure during pregnancy may have an effect on organs both within and outside the reproductive system, and compounds with binding affinity for estrogen receptors weaker than E3 have been found to impact reproductive organs and the brain. Here, we explore potential effects of E3 on fetal development using mouse as a model system. RESULTS: We administered E3 to pregnant mice, exposing the fetus to E3. Adult females exposed to E3 in utero (E3-mice) had increased fertility and superior pregnancy outcomes. Female and male E3-mice showed decreased anxiety and increased exploratory behavior. The expression levels and DNA methylation patterns of multiple genes in the uteri and brains of E3-mice were distinct from controls. E3 promoted complexing of estrogen receptors with several DNA/histone modifiers and their binding to target genes. E3 functions by driving epigenetic change, mediated through epigenetic modifier interactions with estrogen receptors rather than through canonical nuclear transcriptional activation. CONCLUSIONS: We identify an unexpected functional role for E3 in fetal reproductive system and brain. We further identify a novel mechanism of estrogen action, through recruitment of epigenetic modifiers to estrogen receptors and their target genes, which is not correlated with the traditional view of estrogen potency.


Asunto(s)
Estrógenos , Receptores de Estrógenos , Animales , Encéfalo/metabolismo , Epigénesis Genética , Estriol , Estrógenos/genética , Estrógenos/metabolismo , Femenino , Feto/metabolismo , Masculino , Ratones , Embarazo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Esteroides
19.
Blood Cells Mol Dis ; 95: 102662, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35429905

RESUMEN

Acute myeloid leukemia with normal cytogenetics (CN-AML) is the largest group of AML patients which is associated with a variegated patient outcome. Multiple molecular markers have been used to risk-stratify these patients. Estimation of expression of BAALC gene (Brain and Acute Leukemia, Cytoplasmic) mRNA level is one of the predictive markers which has been identified in multiple studies. In this study, we examined the clinical and prognostic value of BAALC gene expression in 149 adult CN-AML patients. We also utilized multi-omics databases to ascertain the association of BAALC gene expression with comprehensive molecular and clinicopathologic features in AML. BAALC overexpression was associated with CD34 positivity on leukemic blasts (p = 0.0026) and the absence of NPM1 gene mutation (p < 0.0001), presence of RUNX1 gene mutation (p < 0.001) and poor patient outcomes, particularly in NPM1-wild type/FLT3-ITD negative adult CN-AML patients. Additionally, BAALC expression was associated with the alteration of methylation of its promoter. Further, pathway analysis revealed that BAALC expression is correlated with MYC targets and Ras signalling. We conclude that high BAALC expression associates with poor patient outcome in NPM1-wild type/FLT3-ITD negative adult CN-AML patients.


Asunto(s)
Leucemia Mieloide Aguda , Adulto , Expresión Génica , Humanos , Leucemia Mieloide Aguda/genética , Mutación , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Pronóstico , Factores de Transcripción/genética , Tirosina Quinasa 3 Similar a fms/genética
20.
Mol Cell ; 82(2): 447-462.e6, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34856123

RESUMEN

Quantitative subcellular metabolomic measurements can explain the roles of metabolites in cellular processes but are subject to multiple confounding factors. We developed stable isotope labeling of essential nutrients in cell culture-subcellular fractionation (SILEC-SF), which uses isotope-labeled internal standard controls that are present throughout fractionation and processing to quantify acyl-coenzyme A (acyl-CoA) thioesters in subcellular compartments by liquid chromatography-mass spectrometry. We tested SILEC-SF in a range of sample types and examined the compartmentalized responses to oxygen tension, cellular differentiation, and nutrient availability. Application of SILEC-SF to the challenging analysis of the nuclear compartment revealed a nuclear acyl-CoA profile distinct from that of the cytosol, with notable nuclear enrichment of propionyl-CoA. Using isotope tracing, we identified the branched chain amino acid isoleucine as a major metabolic source of nuclear propionyl-CoA and histone propionylation, thus revealing a new mechanism of crosstalk between metabolism and the epigenome.


Asunto(s)
Acilcoenzima A/metabolismo , Compartimento Celular , Núcleo Celular/metabolismo , Metabolismo Energético , Histonas/metabolismo , Metabolómica , Procesamiento Proteico-Postraduccional , Animales , Diferenciación Celular , Cromatografía Liquida , Citosol/metabolismo , Epigénesis Genética , Células Hep G2 , Humanos , Isoleucina , Metaboloma , Ratones , Mitocondrias/metabolismo , Oxígeno/metabolismo , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA