Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cancer Discov ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975897

RESUMEN

Resistance to inactive state-selective RASG12C inhibitors frequently entails accumulation of RASGTP, rendering effective inhibition of active RAS potentially desirable. Here, we evaluated the anti-tumor activity of the RAS(ON) multi-selective tri-complex inhibitor RMC-7977 and dissected mechanisms of response and tolerance in KRASG12C-mutant NSCLC. Broad-spectrum, reversible RASGTP inhibition with or without concurrent covalent targeting of active RASG12C yielded superior and differentiated antitumor activity across diverse co-mutational KRASG12C-mutant NSCLC mouse models of primary or acquired RASG12C(ON) or (OFF) inhibitor resistance. Interrogation of time-resolved single cell transcriptional responses established an in vivo atlas of multi-modal acute and chronic RAS pathway inhibition in the NSCLC ecosystem and uncovered a regenerative mucinous transcriptional program that supports long-term tumor cell persistence. In patients with advanced KRASG12C-mutant NSCLC, the presence of mucinous histological features portended poor response to sotorasib or adagrasib. Our results have potential implications for personalized medicine and the development of rational RAS inhibitor-anchored therapeutic strategies.

2.
Cancer Discov ; 14(6): 994-1017, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38593348

RESUMEN

RAS-driven cancers comprise up to 30% of human cancers. RMC-6236 is a RAS(ON) multi-selective noncovalent inhibitor of the active, GTP-bound state of both mutant and wild-type variants of canonical RAS isoforms with broad therapeutic potential for the aforementioned unmet medical need. RMC-6236 exhibited potent anticancer activity across RAS-addicted cell lines, particularly those harboring mutations at codon 12 of KRAS. Notably, oral administration of RMC-6236 was tolerated in vivo and drove profound tumor regressions across multiple tumor types in a mouse clinical trial with KRASG12X xenograft models. Translational PK/efficacy and PK/PD modeling predicted that daily doses of 100 mg and 300 mg would achieve tumor control and objective responses, respectively, in patients with RAS-driven tumors. Consistent with this, we describe here objective responses in two patients (at 300 mg daily) with advanced KRASG12X lung and pancreatic adenocarcinoma, respectively, demonstrating the initial activity of RMC-6236 in an ongoing phase I/Ib clinical trial (NCT05379985). SIGNIFICANCE: The discovery of RMC-6236 enables the first-ever therapeutic evaluation of targeted and concurrent inhibition of canonical mutant and wild-type RAS-GTP in RAS-driven cancers. We demonstrate that broad-spectrum RAS-GTP inhibition is tolerable at exposures that induce profound tumor regressions in preclinical models of, and in patients with, such tumors. This article is featured in Selected Articles from This Issue, p. 897.


Asunto(s)
Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Ratones , Línea Celular Tumoral , Proteínas Proto-Oncogénicas p21(ras)/genética , Femenino , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Guanosina Trifosfato/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Masculino
3.
J Orthop Res ; 42(7): 1587-1598, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38316622

RESUMEN

Normalized signal intensity (SI) obtained from magnetic resonance imaging (MRI) has been used to track anterior cruciate ligament (ACL) postoperative remodeling. We aimed to assess the effect of MRI sequence (PD: proton density-weighted; T2: T2-weighted; CISS: constructive interference in steady state) on postoperative changes in healing ACLs/grafts. We hypothesized that CISS is better at detecting longitudinal SI and texture changes of the healing ACL/graft compared to the common clinical sequences (PD and T2). MR images of patients who underwent ACL surgery were evaluated and separated into groups based on surgical procedure (Bridge-Enhanced ACL Repair (BEAR; n = 50) versus ACL reconstruction (ACLR; n = 24)). CISS images showed decreasing SI across all timepoints in both the BEAR and ACLR groups (p < 0.01), PD and T2 images showed decreasing SI in the 6-to-12- and 12-to-24-month postoperative timeframes in the BEAR group (p < 0.02), and PD images additionally showed decreasing SI between 6- and 24-months postoperation in the ACLR group (p = 0.02). CISS images showed texture changes in both the BEAR and ACLR groups, showing increases in energy and decreases in entropy in the 6-to-12- and 6-to-24-month postoperative timeframes in the BEAR group (p < $\lt $ 0.04), and increases in energy, decreases in entropy, and increases in homogeneity between 6 and 24 months postoperation in the ACLR group (p < 0.04). PD images showed increases in energy and decreases in entropy between 6- and 24-months postoperation in the ACLR group (p < 0.008). Finally, CISS was estimated to require a smaller sample size than PD and T2 to detect SI differences related to postoperative remodeling.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Adulto , Reconstrucción del Ligamento Cruzado Anterior/métodos , Adulto Joven , Ligamento Cruzado Anterior/cirugía , Ligamento Cruzado Anterior/diagnóstico por imagen , Adolescente , Cicatrización de Heridas , Lesiones del Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/diagnóstico por imagen , Estudios Retrospectivos
4.
bioRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38105998

RESUMEN

Broad-spectrum RAS inhibition holds the potential to benefit roughly a quarter of human cancer patients whose tumors are driven by RAS mutations. However, the impact of inhibiting RAS functions in normal tissues is not known. RMC-7977 is a highly selective inhibitor of the active (GTP-bound) forms of KRAS, HRAS, and NRAS, with affinity for both mutant and wild type (WT) variants. As >90% of human pancreatic ductal adenocarcinoma (PDAC) cases are driven by activating mutations in KRAS, we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models, including human and murine cell lines, human patient-derived organoids, human PDAC explants, subcutaneous and orthotopic cell-line or patient derived xenografts, syngeneic allografts, and genetically engineered mouse models. We observed broad and pronounced anti-tumor activity across these models following direct RAS inhibition at doses and concentrations that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumor versus normal tissues. Treated tumors exhibited waves of apoptosis along with sustained proliferative arrest whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS inhibition in the setting of PDAC.

5.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37909334

RESUMEN

The PI3K/AKT/mTOR pathway is commonly dysregulated in cancer. Rapalogs exhibit modest clinical benefit, likely owing to their lack of effects on 4EBP1. We hypothesized that bi-steric mTORC1-selective inhibitors would have greater potential for clinical benefit than rapalogs in tumors with mTORC1 dysfunction. We assessed this hypothesis in tumor models with high mTORC1 activity both in vitro and in vivo. Bi-steric inhibitors had strong growth inhibition, eliminated phosphorylated 4EBP1, and induced more apoptosis than rapamycin or MLN0128. Multiomics analysis showed extensive effects of the bi-steric inhibitors in comparison with rapamycin. De novo purine synthesis was selectively inhibited by bi-sterics through reduction in JUN and its downstream target PRPS1 and appeared to be the cause of apoptosis. Hence, bi-steric mTORC1-selective inhibitors are a therapeutic strategy to treat tumors driven by mTORC1 hyperactivation.


Asunto(s)
Inhibidores mTOR , Fosfatidilinositol 3-Quinasas , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Sirolimus/farmacología , Apoptosis , Proliferación Celular , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
6.
Science ; 381(6659): 794-799, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37590355

RESUMEN

The discovery of small-molecule inhibitors requires suitable binding pockets on protein surfaces. Proteins that lack this feature are considered undruggable and require innovative strategies for therapeutic targeting. KRAS is the most frequently activated oncogene in cancer, and the active state of mutant KRAS is such a recalcitrant target. We designed a natural product-inspired small molecule that remodels the surface of cyclophilin A (CYPA) to create a neomorphic interface with high affinity and selectivity for the active state of KRASG12C (in which glycine-12 is mutated to cysteine). The resulting CYPA:drug:KRASG12C tricomplex inactivated oncogenic signaling and led to tumor regressions in multiple human cancer models. This inhibitory strategy can be used to target additional KRAS mutants and other undruggable cancer drivers. Tricomplex inhibitors that selectively target active KRASG12C or multiple RAS mutants are in clinical trials now (NCT05462717 and NCT05379985).


Asunto(s)
Productos Biológicos , Ciclofilina A , Inmunofilinas , Chaperonas Moleculares , Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Cisteína/química , Cisteína/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Ciclofilina A/química , Ciclofilina A/metabolismo , Inmunofilinas/química , Inmunofilinas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética
7.
medRxiv ; 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37546855

RESUMEN

Anterior cruciate ligament (ACL) injuries are a common cause of soft tissue injuries in young active individuals, leading to a significant risk of premature joint degeneration. Postoperative management of such injuries, in particular returning patients to athletic activities, is a challenge with immediate and long-term implications including the risk of subsequent injury. In this study, we present LigaNET, a multi-modal deep learning pipeline that predicts the risk of subsequent ACL injury following surgical treatment. Postoperative MRIs (n=1,762) obtained longitudinally between 3 to 24 months after ACL surgery from a cohort of 159 patients along with 11 non-imaging outcomes were used to train and test: 1) a 3D CNN to predict subsequent ACL injury from segmented ACLs, 2) a 3D CNN to predict injury from the whole MRI, 3) a logistic regression classifier predict injury from non-imaging data, and 4) a multi-modal pipeline by fusing the predictions of each classifier. The CNN using the segmented ACL achieved an accuracy of 77.6% and AUROC of 0.84, which was significantly better than the CNN using the whole knee MRI (accuracy: 66.6%, AUROC: 0.70; P<.001) and the non-imaging classifier (accuracy: 70.1%, AUROC: 0.75; P=.039). The fusion of all three classifiers resulted in highest classification performance (accuracy: 80.6%, AUROC: 0.89), which was significantly better than each individual classifier (P<.001). The developed multi-modal approach had similar performance in predicting the risk of subsequent ACL injury from any of the imaging sequences (P>.10). Our results demonstrate that a deep learning approach can achieve high performance in identifying patients at high risk of subsequent ACL injury after surgery and may be used in clinical decision making to improve postoperative management (e.g., safe return to sports) of ACL injured patients.

8.
Oncogene ; 42(28): 2207-2217, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37264081

RESUMEN

Activation of the PI3K-mTOR pathway is central to breast cancer pathogenesis including resistance to many targeted therapies. The mTOR kinase forms two distinct complexes, mTORC1 and mTORC2, and understanding which is required for the survival of malignant cells has been limited by tools to selectively and completely impair either subcomplex. To address this, we used RMC-6272, a bi-steric molecule with a rapamycin-like moiety linked to an mTOR active-site inhibitor that displays >25-fold selectivity for mTORC1 over mTORC2 substrates. Complete suppression of mTORC1 by RMC-6272 causes apoptosis in ER+/HER2- breast cancer cell lines, particularly in those that harbor mutations in PIK3CA or PTEN, due to inhibition of the rapamycin resistant, mTORC1 substrate 4EBP1 and reduction of the pro-survival protein MCL1. RMC-6272 reduced translation of ribosomal mRNAs, MYC target genes, and components of the CDK4/6 pathway, suggesting enhanced impairment of oncogenic pathways compared to the partial mTORC1 inhibitor everolimus. RMC-6272 maintained efficacy in hormone therapy-resistant acquired cell lines and patient-derived xenografts (PDX), showed increased efficacy in CDK4/6 inhibitor treated acquired resistant cell lines versus their parental counterparts, and was efficacious in a PDX from a patient experiencing resistance to CDK4/6 inhibition. Bi-steric mTORC1-selective inhibition may be effective in overcoming multiple forms of therapy-resistance in ER+ breast cancers.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias de la Mama/patología , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Sirolimus/farmacología , Sirolimus/uso terapéutico , Resistencia a Medicamentos , Línea Celular Tumoral , Proliferación Celular
9.
J Med Chem ; 66(1): 149-169, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36533617

RESUMEN

Hyperactivation of mTOR kinase by mutations in the PI3K/mTOR pathway or by crosstalk with other mutant cancer drivers, such as RAS, is a feature of many tumors. Multiple allosteric inhibitors of mTORC1 and orthosteric dual inhibitors of mTORC1 and mTORC2 have been developed as anticancer drugs, but their clinical utility has been limited. To address these limitations, we have developed a novel class of "bi-steric inhibitors" that interact with both the orthosteric and the allosteric binding sites in order to deepen the inhibition of mTORC1 while also preserving selectivity for mTORC1 over mTORC2. In this report, we describe the discovery and preclinical profile of the development candidate RMC-5552 and the in vivo preclinical tool compound RMC-6272. We also present evidence that selective inhibition of mTORC1 in combination with covalent inhibition of KRASG12C shows increased antitumor activity in a preclinical model of KRASG12C mutant NSCLC that exhibits resistance to KRASG12C inhibitor monotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proliferación Celular , Serina-Treonina Quinasas TOR , Diana Mecanicista del Complejo 2 de la Rapamicina , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Línea Celular Tumoral
11.
Front Oncol ; 11: 673213, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408976

RESUMEN

The mechanistic target of rapamycin (mTOR) is a kinase whose activity is elevated in hematological malignancies. mTOR-complex-1 (mTORC1) phosphorylates numerous substrates to promote cell proliferation and survival. Eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) are mTORC1 substrates with an integral role in oncogenic protein translation. Current pharmacological approaches to inhibit mTORC1 activity and 4E-BP phosphorylation have drawbacks. Recently we described a series of bi-steric compounds that are potent and selective inhibitors of mTORC1, inhibiting 4E-BP phosphorylation at lower concentrations than mTOR kinase inhibitors (TOR-KIs). Here we report the activity of the mTORC1-selective bi-steric inhibitor, RMC-4627, in BCR-ABL-driven models of B-cell acute lymphoblastic leukemia (B-ALL). RMC-4627 exhibited potent and selective inhibition of 4E-BP1 phosphorylation in B-ALL cell lines without inhibiting mTOR-complex-2 (mTORC2) activity. RMC-4627 suppressed cell cycle progression, reduced survival, and enhanced dasatinib cytotoxicity. Compared to a TOR-KI compound, RMC-4627 was more potent, and its effects on cell viability were sustained after washout in vitro. Notably, a once-weekly, well tolerated dose reduced leukemic burden in a B-ALL xenograft model and enhanced the activity of dasatinib. These preclinical studies suggest that intermittent dosing of a bi-steric mTORC1-selective inhibitor has therapeutic potential as a component of leukemia regimens, and further study is warranted.

12.
Nat Chem Biol ; 17(10): 1065-1074, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34168367

RESUMEN

The clinical benefits of pan-mTOR active-site inhibitors are limited by toxicity and relief of feedback inhibition of receptor expression. To address these limitations, we designed a series of compounds that selectively inhibit mTORC1 and not mTORC2. These 'bi-steric inhibitors' comprise a rapamycin-like core moiety covalently linked to an mTOR active-site inhibitor. Structural modification of these components modulated their affinities for their binding sites on mTOR and the selectivity of the bi-steric compound. mTORC1-selective compounds potently inhibited 4EBP1 phosphorylation and caused regressions of breast cancer xenografts. Inhibition of 4EBP1 phosphorylation was sufficient to block cancer cell growth and was necessary for maximal antitumor activity. At mTORC1-selective doses, these compounds do not alter glucose tolerance, nor do they relieve AKT-dependent feedback inhibition of HER3. Thus, in preclinical models, selective inhibitors of mTORC1 potently inhibit tumor growth while causing less toxicity and receptor reactivation as compared to pan-mTOR inhibitors.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Diseño de Fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Relación Estructura-Actividad
14.
Front Immunol ; 11: 576310, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133093

RESUMEN

Shp1, encoded by the gene Ptpn6, is a protein tyrosine phosphatase that transduces inhibitory signals downstream of immunoreceptors in many immune cell types. Blocking Shp1 activity represents an exciting potential immunotherapeutic strategy for the treatment of cancer, as Shp1 inhibition would be predicted to unleash both innate and adaptive immunity against tumor cells. Antibodies blocking the interaction between CD47 on tumor cells and SIRPα on macrophages enhance macrophage phagocytosis, show efficacy in preclinical tumor models, and are being evaluated in the clinic. Here we found that Shp1 bound to phosphorylated peptide sequences derived from SIRPα and transduced the anti-phagocytic signal, as Shp1 loss in mouse bone marrow-derived macrophages increased phagocytosis of tumor cells in vitro. We also generated a novel mouse model to evaluate the impact of global, inducible Ptpn6 deletion on anti-tumor immunity. We found that inducible Shp1 loss drove an inflammatory disease in mice that was phenotypically similar to that seen when Ptpn6 is knocked out from birth. This indicates that acute perturbation of Shp1 in vivo could drive hyperactivation of immune cells, which could be therapeutically beneficial, though at the risk of potential toxicity. In this model, we found that Shp1 loss led to robust anti-tumor immunity against two immune-rich syngeneic tumor models that are moderately inflamed though not responsive to checkpoint inhibitors, MC38 and E0771. Shp1 loss did not promote anti-tumor activity in the non-inflamed B16F10 model. The observed activity in MC38 and E0771 tumors was likely due to effects of both innate and adaptive immune cells. Following Shp1 deletion, we observed increases in intratumoral myeloid cells in both models, which was more striking in E0771 tumors. E0771 tumors also contained an increased ratio of effector to regulatory T cells following Shp1 loss. This was not observed for MC38 tumors, though we did find increased levels of IFNγ, a cytokine produced by effector T cells, in these tumors. Overall, our preclinical data suggested that targeting Shp1 may be an attractive therapeutic strategy for boosting the immune response to cancer via a mechanism involving both innate and adaptive leukocytes.


Asunto(s)
Adenocarcinoma/enzimología , Neoplasias de la Mama/enzimología , Neoplasias del Colon/enzimología , Melanoma Experimental/enzimología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/deficiencia , Neoplasias Cutáneas/enzimología , Macrófagos Asociados a Tumores/enzimología , Inmunidad Adaptativa , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Adenocarcinoma/terapia , Animales , Antígenos de Diferenciación/metabolismo , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Neoplasias del Colon/terapia , Femenino , Humanos , Inmunidad Innata , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Melanoma Experimental/terapia , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Receptores Inmunológicos/metabolismo , Transducción de Señal , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia , Células THP-1 , Carga Tumoral , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología
15.
Cancer Res ; 80(13): 2889-2902, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32350067

RESUMEN

The protein tyrosine phosphatase SHP2 binds to phosphorylated signaling motifs on regulatory immunoreceptors including PD-1, but its functional role in tumor immunity is unclear. Using preclinical models, we show that RMC-4550, an allosteric inhibitor of SHP2, induces antitumor immunity, with effects equivalent to or greater than those resulting from checkpoint blockade. In the tumor microenvironment, inhibition of SHP2 modulated T-cell infiltrates similar to checkpoint blockade. In addition, RMC-4550 drove direct, selective depletion of protumorigenic M2 macrophages via attenuation of CSF1 receptor signaling and increased M1 macrophages via a mechanism independent of CD8+ T cells or IFNγ. These dramatic shifts in polarized macrophage populations in favor of antitumor immunity were not seen with checkpoint blockade. Consistent with a pleiotropic mechanism of action, RMC-4550 in combination with either checkpoint or CSF1R blockade caused additive antitumor activity with complete tumor regressions in some mice; tumors intrinsically sensitive to SHP2 inhibition or checkpoint blockade were particularly susceptible. Our preclinical findings demonstrate that SHP2 thus plays a multifaceted role in inducing immune suppression in the tumor microenvironment, through both targeted inhibition of RAS pathway-dependent tumor growth and liberation of antitumor immune responses. Furthermore, these data suggest that inhibition of SHP2 is a promising investigational therapeutic approach. SIGNIFICANCE: Inhibition of SHP2 causes direct and selective depletion of protumorigenic M2 macrophages and promotes antitumor immunity, highlighting an investigational therapeutic approach for some RAS pathway-driven cancers.


Asunto(s)
Neoplasias de la Mama/inmunología , Inmunosupresores/farmacología , Macrófagos/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Microambiente Tumoral/inmunología , Regulación Alostérica , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/prevención & control , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transducción de Señal , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
J Med Chem ; 63(5): 2013-2027, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-31059256

RESUMEN

Direct pharmacological inhibition of RAS has remained elusive, and efforts to target CRAF have been challenging due to the complex nature of RAF signaling, downstream of activated RAS, and the poor overall kinase selectivity of putative RAF inhibitors. Herein, we describe 15 (LXH254, Aversa, R.; et al. Int. Patent WO2014151616A1, 2014), a selective B/C RAF inhibitor, which was developed by focusing on drug-like properties and selectivity. Our previous tool compound, 3 (RAF709; Nishiguchi, G. A.; et al. J. Med. Chem. 2017, 60, 4969), was potent, selective, efficacious, and well tolerated in preclinical models, but the high human intrinsic clearance precluded further development and prompted further investigation of close analogues. A structure-based approach led to a pyridine series with an alcohol side chain that could interact with the DFG loop and significantly improved cell potency. Further mitigation of human intrinsic clearance and time-dependent inhibition led to the discovery of 15. Due to its excellent properties, it was progressed through toxicology studies and is being tested in phase 1 clinical trials.


Asunto(s)
Antineoplásicos/química , Descubrimiento de Drogas/métodos , Mutación/genética , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Antineoplásicos/farmacología , Diseño de Fármacos , Descubrimiento de Drogas/tendencias , Humanos , Simulación del Acoplamiento Molecular/métodos , Simulación del Acoplamiento Molecular/tendencias , Mutación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
17.
Nat Cell Biol ; 20(9): 1064-1073, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104724

RESUMEN

Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAFV600E-driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E oncogenic BRAF, RAS GTPase-activating protein (GAP) NF1 (neurofibromin 1) loss and oncogenic KRAS. Here, we show that targeting the SHP2 phosphatase (encoded by PTPN11) with RMC-4550, a small-molecule allosteric inhibitor, is effective in human cancer models bearing RAS-GTP-dependent oncogenic BRAF (for example, class 3 BRAF mutants), NF1 loss or nucleotide-cycling oncogenic RAS (for example, KRASG12C). SHP2 inhibitor treatment decreases oncogenic RAS/RAF/MEK/ERK signalling and cancer growth by disrupting SOS1-mediated RAS-GTP loading. Our findings illuminate a critical function for SHP2 in promoting oncogenic RAS/MAPK pathway activation in cancers with RAS-GTP-dependent oncogenic BRAF, NF1 loss and nucleotide-cycling oncogenic KRAS. SHP2 inhibition is a promising molecular therapeutic strategy for patients with cancers bearing these oncogenic drivers.


Asunto(s)
Biomarcadores de Tumor/genética , Guanosina Trifosfato/metabolismo , Mutación , Neoplasias/enzimología , Neoplasias/genética , Neurofibromina 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fenotipo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína SOS1/metabolismo , Transducción de Señal , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas raf/metabolismo
18.
Cancer Res ; 78(6): 1537-1548, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29343524

RESUMEN

Resistance to the RAF inhibitor vemurafenib arises commonly in melanomas driven by the activated BRAF oncogene. Here, we report antitumor properties of RAF709, a novel ATP-competitive kinase inhibitor with high potency and selectivity against RAF kinases. RAF709 exhibited a mode of RAF inhibition distinct from RAF monomer inhibitors such as vemurafenib, showing equal activity against both RAF monomers and dimers. As a result, RAF709 inhibited MAPK signaling activity in tumor models harboring either BRAFV600 alterations or mutant N- and KRAS-driven signaling, with minimal paradoxical activation of wild-type RAF. In cell lines and murine xenograft models, RAF709 demonstrated selective antitumor activity in tumor cells harboring BRAF or RAS mutations compared with cells with wild-type BRAF and RAS genes. RAF709 demonstrated a direct pharmacokinetic/pharmacodynamic relationship in in vivo tumor models harboring KRAS mutation. Furthermore, RAF709 elicited regression of primary human tumor-derived xenograft models with BRAF, NRAS, or KRAS mutations with excellent tolerability. Our results support further development of inhibitors like RAF709, which represents a next-generation RAF inhibitor with unique biochemical and cellular properties that enables antitumor activities in RAS-mutant tumors.Significance: In an effort to develop RAF inhibitors with the appropriate pharmacological properties to treat RAS mutant tumors, RAF709, a compound with potency, selectivity, and in vivo properties, was developed that will allow preclinical therapeutic hypothesis testing, but also provide an excellent probe to further unravel the complexities of RAF kinase signaling. Cancer Res; 78(6); 1537-48. ©2018 AACR.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Antineoplásicos/farmacología , Benzamidas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Quinasas raf/antagonistas & inhibidores , Proteínas ras/genética , 2,2'-Dipiridil/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Ratones Desnudos , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas raf/metabolismo
19.
Proc Natl Acad Sci U S A ; 114(51): E10947-E10955, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29203670

RESUMEN

KRAS mutant tumors are largely recalcitrant to targeted therapies. Genetically engineered mouse models (GEMMs) of Kras mutant cancer recapitulate critical aspects of this disease and are widely used for preclinical validation of targets and therapies. Through comprehensive profiling of exomes and matched transcriptomes of >200 KrasG12D-initiated GEMM tumors from one lung and two pancreatic cancer models, we discover that significant intratumoral and intertumoral genomic heterogeneity evolves during tumorigenesis. Known oncogenes and tumor suppressor genes, beyond those engineered, are mutated, amplified, and deleted. Unlike human tumors, the GEMM genomic landscapes are dominated by copy number alterations, while protein-altering mutations are rare. However, interspecies comparative analyses of the genomic landscapes demonstrate fidelity between genes altered in KRAS mutant human and murine tumors. Genes that are spontaneously altered during murine tumorigenesis are also among the most prevalent found in human indications. Using targeted therapies, we also demonstrate that this inherent tumor heterogeneity can be exploited preclinically to discover cancer-specific and genotype-specific therapeutic vulnerabilities. Focusing on Kras allelic imbalance, a feature shared by all three models, we discover that MAPK pathway inhibition impinges uniquely on this event, indicating distinct susceptibility and fitness advantage of Kras-mutant cells. These data reveal previously unknown genomic diversity among KrasG12D-initiated GEMM tumors, places them in context of human patients, and demonstrates how to exploit this inherent tumor heterogeneity to discover therapeutic vulnerabilities.


Asunto(s)
Genes ras , Heterogeneidad Genética , Neoplasias/genética , Neoplasias/patología , Alelos , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Genómica/métodos , Humanos , Neoplasias Pulmonares/genética , Sistema de Señalización de MAP Quinasas , Ratones , Mutación , Neoplasias/metabolismo , Neoplasias/mortalidad , Pronóstico , Selección Genética , Transcriptoma
20.
J Med Chem ; 60(12): 4869-4881, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28557458

RESUMEN

RAS oncogenes have been implicated in >30% of human cancers, all representing high unmet medical need. The exquisite dependency on CRAF kinase in KRAS mutant tumors has been established in genetically engineered mouse models and human tumor cells. To date, many small molecule approaches are under investigation to target CRAF, yet kinase-selective and cellular potent inhibitors remain challenging to identify. Herein, we describe 14 (RAF709) [ Aversa , Biaryl amide compounds as kinase inhibitors and their preparation . WO 2014151616, 2014 ], a selective B/C RAF inhibitor, which was developed through a hypothesis-driven approach focusing on drug-like properties. A key challenge encountered in the medicinal chemistry campaign was maintaining a balance between good solubility and potent cellular activity (suppression of pMEK and proliferation) in KRAS mutant tumor cell lines. We investigated the small molecule crystal structure of lead molecule 7 and hypothesized that disruption of the crystal packing would improve solubility, which led to a change from N-methylpyridone to a tetrahydropyranyl oxy-pyridine derivative. 14 proved to be soluble, kinase selective, and efficacious in a KRAS mutant xenograft model.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Antineoplásicos/farmacología , Benzamidas/farmacología , Quinasas raf/antagonistas & inhibidores , Proteínas ras/genética , 2,2'-Dipiridil/química , 2,2'-Dipiridil/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Benzamidas/química , Cristalografía por Rayos X , Perros , Diseño de Fármacos , Descubrimiento de Drogas , Estabilidad de Medicamentos , Humanos , Concentración 50 Inhibidora , Ratones , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas p21(ras)/genética , Ratas , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA