Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Inflammation ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017810

RESUMEN

Psoriasis is a chronic skin inflammatory disorder characterized by the hyper-activation of the immune system and the over-proliferation of epidermal keratinocytes. This study aimed to investigate the anti-psoriatic activity of Biochanin A (BCA), a phytomolecule with known anti-inflammatory and anti-cancer properties, using the IMQ-induced psoriasis-like mouse model. Network pharmacology analysis was performed to investigate the targetability of Biochanin A (BCA) against psoriasis. Psoriasis-like skin inflammation was established using BALB/c mice by topical application of IMQ (5%). BCA cream (0.3%, 1%, 3%) was applied on the skin regions every day for 6 days. The skin phenotypes-erythema and scaling were scored every day. On the 7th day, skin tissues were collected for gene expression analysis, histopathological analysis, cytokine levels determination, and western blot analysis for signaling mechanisms. The network pharmacology analysis has identified 57 common targets between psoriasis and BCA. The topical application of IMQ induced a typical psoriasis-like skin phenotype including redness, skin thickening, and plaque formation. Upon BCA treatment, the psoriasis-like symptoms were significantly reduced in a dose-dependent manner. The targets identified by the network pharmacology (MMP9, EGFR, and PTGS2) and the pro-inflammatory cytokine gene expression were found to be significantly elevated in IMQ controls, and upon BCA treatment they were found significantly reduced. The release of cytokines linked to psoriasis (IL-17A and IL-23) were significantly reduced upon BCA treatment. Furthermore, our findings demonstrated that BCA treatment alleviated the psoriasis-like symptoms via modulating NF-κB and MAPK signaling pathways. Our results demonstrate the therapeutic potential of BCA against IMQ-induced psoriasis-like skin inflammation.

2.
Int J Pharm ; 649: 123644, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38040396

RESUMEN

Nintedanib (NIN) and pirfenidone are the only approved drugs for the treatment of Idiopathic Pulmonary Fibrosis (IPF). However, NIN and pirfenidone have low oral bioavailability and limited therapeutic potential, requiring higher dosages to increase their efficacy, which causes significant liver and gastrointestinal toxicities. In this study, we aimed to develop nintedanib-loaded solid lipid nanoparticles (NIN-SLN) to improve the oral bioavailability and therapeutic potential against TGF-ß-induced differentiation in IPF fibroblasts and bleomycin (BLM)-induced lung fibrosis in rat models. NIN-SLN was prepared using a double-emulsification method and characterization studies (Particle size, zeta potential, entrapment efficiency and other parameters) were performed using various techniques. NIN-SLN treatment significantly (p < 0.001) downregulated α-SMA and COL3A1 expression in TGF-ß stimulated DHLF and LL29 cells. NIN-SLN showed a 2.87-fold increase in the bioavailability of NIN and also improved the NIN levels in lung tissues compared to NIN alone. Pharmacodynamic investigation revealed that NIN-SLN (50 mg/Kg) treatment significantly attenuated BLM-induced lung fibrosis by inhibiting epithelial-to-mesenchymal-transition (EMT), extracellular matrix remodelling, and collagen deposition compared to free NIN. Additionally, in the BLM model of fibrosis, NIN-SLN greatly improved the BLM-caused pathological changes, attenuated the NIN-induced gastrointestinal abnormalities, and significantly improved the lung functional indices compared to free NIN. Collectively, NIN-SLN could be a promising nanoformulation for the management of pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Pulmón , Ratas , Animales , Disponibilidad Biológica , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/uso terapéutico , Bleomicina
3.
Bioorg Med Chem Lett ; 97: 129549, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952597

RESUMEN

Therapeutically active lipids in drug delivery systems offer customization for enhanced pharmaceutical and biological effects, improving safety and efficacy. Biologically active N, N-didodecyl-3,4-dimethoxy-N-methylbenzenaminium lipid (Q) was synthesized and employed to create a liposome formulation (FQ) encapsulating melphalan (M) through a thin film hydration method. Synthesized cationic lipids and their liposomal formulation underwent characterization and assessment for additive anti-cancer effects on myeloma and melanoma cancer cell lines. These effects were evaluated through various studies, including cytotoxicity assessments, cell cycle arrest analysis, apoptosis measurements, mitochondrial membrane potential depolarization, DNA fragmentation, and a significant reduction in tumorigenic potential, as evidenced by a decrease in both the number and percentage area of cancer spheroids.


Asunto(s)
Antineoplásicos , Liposomas , Humanos , Línea Celular , Sistemas de Liberación de Medicamentos , Lípidos , Melfalán/farmacología , Neoplasias/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología
4.
Life Sci ; 330: 122027, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37597767

RESUMEN

AIMS: Acute lung inflammation, particularly acute respiratory distress syndrome (ARDS), is caused by a variety of pathogens including bacteria and viruses. ß-Glucans have been reported to possess both anti-inflammatory and immunomodulatory properties. The current study evaluated the therapeutic effect of ß-glucans on polyinosinic:polycytidylic acid (Poly(I:C)) induced lung inflammation in both hamster and mice models. MAIN METHODS: Poly(I:C)-induced ALI/inflammation models were developed in hamsters (2.5 mg/kg) and mice (2 mg/kg) by delivering the Poly(I:C) intratracheally, and followed with and without ß-glucan administration. After treatment, lung mechanics were assessed and lung tissues were isolated and analyzed for mRNA/protein expression, and histopathological examinations. KEY FINDINGS: Poly(I:C) administration, caused a significant elevation of inflammatory marker's expression in lung tissues and showed abnormal lung mechanics in mice and hamsters. Interestingly, treatment with ß-glucan significantly (p < 0.001) reversed the Poly(I:C)-induced inflammatory events and inflammatory markers expression in both mRNA (IL-6, IL-1ß, TNF-α, CCL2 and CCL7) and protein levels (TNF-α, CD68, myeloperoxidase, neutrophil elastase, MUC-5Ac and iNOS). Lung functional assays revealed that ß-glucan treatment significantly improved lung mechanics. Histopathological analysis showed that ß-glucan treatment significantly attenuated the Poly(I:C) induced inflammatory cell infiltration, injury and goblet cell population in lung tissues. Consistent with these findings, ß-glucan treatment markedly reduced the number of neutrophils and macrophages in lung tissues. Our findings further demonstrated that ß-glucan could reduce inflammation by suppressing the MAPK pathway. SIGNIFICANCE: These results suggested that ß-glucan may attenuate the pathogenic effects of Poly(I:C)-induced ALI/ARDS via modulating the MAPK pathway, indicating ß-glucan as a possible therapeutic agent for the treatment of viral-pulmonary inflammation/injury.


Asunto(s)
Lesión Pulmonar Aguda , Neumonía , Síndrome de Dificultad Respiratoria , Virosis , Cricetinae , Animales , Ratones , Factor de Necrosis Tumoral alfa , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Células Caliciformes
5.
Eur J Pharmacol ; 953: 175820, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37245857

RESUMEN

In idiopathic pulmonary fibrosis (IPF), excessive collagen deposition predisposes to irreversible lung function decline, respiratory failure, and ultimately death. Due to the limited therapeutic efficacy of FDA-approved medications, novel drugs are warranted for better treatment outcomes. Dehydrozingerone (DHZ) is an analogue of curcumin that has been investigated against pulmonary fibrosis using a bleomycin-induced pulmonary fibrosis model in rats. In in vitro, TGF-ß-induced differentiation models (using NHLF, LL29, DHLF and A549 cells) were adopted to assess fibrotic markers expression and explored the mechanism of action. DHZ administration attenuated the bleomycin-induced elevation of lung index, inflammatory cell infiltrations, and hydroxyproline levels in lung tissues. Furthermore, treatment with DHZ mitigated the bleomycin-mediated elevation of extracellular matrix (ECM), epithelial-to-mesenchymal-transition (EMT), and collagen deposition markers and improved lung mechanics. In addition, treatment with DHZ significantly suppressed the BLM-induced apoptosis and rescued the BLM-induced pathological abnormalities in lung tissues. In vitro assays revealed that DHZ suppressed the expression of TGF-ß-elevated collagen deposition, EMT and ECM markers in both mRNA/protein levels. Our findings showed that DHZ has anti-fibrotic effect against pulmonary fibrosis by modulating Wnt/ß-catenin signaling, suggesting that DHZ may serve as a potential treatment option for IPF.


Asunto(s)
Transición Epitelial-Mesenquimal , Fibrosis Pulmonar Idiopática , Ratas , Animales , beta Catenina/metabolismo , Pulmón , Fibrosis Pulmonar Idiopática/patología , Factor de Crecimiento Transformador beta/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Colágeno/metabolismo , Bleomicina/farmacología , Factor de Crecimiento Transformador beta1/metabolismo
6.
Drug Dev Ind Pharm ; 48(8): 384-396, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36047536

RESUMEN

OBJECTIVE: The main objective is to formulate solid lipid nanoparticles conjugated with cyclic RGDfk peptide encapsulated with gemcitabine hydrochloride drug for targeting breast cancer. SIGNIFICANCE: The hydrophilic nature of gemcitabine hampers passive transport by cell membrane permeation that may lead to drug resistance as it has to enter the cells via nucleoside transporters. The art of encapsulating the drug in a nanovesicle and then anchoring it with a targeting ligand is one of the present areas of research in cancer chemotherapy. METHODS: In this study, solid lipid nanoparticles were prepared by double emulsification and solvent evaporation method. Cyclic RGDfk and gemcitabine hydrochloride were used as targeting ligands and chemotherapeutic drugs, respectively, for targeting breast cancer. The prepared nanoparticles were evaluated for in vitro and in vivo performance to showcase the targeting efficiency and therapeutic benefits of the gemcitabine-loaded ligand conjugated nanoparticles. RESULTS: When compared with gemcitabine (GEM) and GEM loaded nanoparticles (GSLN), the ligand conjugated GEM nanoparticles (cGSLN) showed superior cytotoxicity, apoptosis, and inhibition of 3D multicellular spheroids in human breast cancer cells (MDA MB 231). The in vivo tumor regression studies in orthotopic breast cancer induced Balb/C mice showed that cGSLN displayed superior tumor suppression and also the targeting potential of the cGSLN toward induced breast cancer. CONCLUSION: Prepared nanoformulations showed enhanced anticancer activity in both 2D and 3D cell culture models along with antitumor efficacy in orthotopic breast cancer mouse models.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Humanos , Ratones , Animales , Femenino , Integrina beta3/uso terapéutico , Integrina alfaV , Ligandos , Línea Celular Tumoral , Neoplasias de la Mama/patología , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Gemcitabina
7.
Apoptosis ; 27(11-12): 825-839, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35829938

RESUMEN

Polyphenols are naturally occurring organic compounds with varying structures represented by four major groups: flavonoids, phenolic acids, lignans and stilbenes. Several studies suggested that these secondary metabolites have health benefits due to its anti-tumorigenic effect. Therefore, substantial effort has been put forward to isolate and characterize these natural compounds and synthesize analogues that may serve as potential anti-cancer therapeutics. This present study is aimed at designing and synthesis of azaflavanone derivative and in understanding its mechanism of action in vitro and in vivo. Molecular docking studies predicted that the compound can potentially bind strongly to the Cyclin E1-Cdk2 complex which is a key mediator of the cell cycle progression indicating a biological interference in aggressive prostate cancer. Further downstream studies to understand its cytotoxicity and mechanism of action showed this azaflavanone derivative markedly inhibits viability of prostate cancer cells (DU145) showing an IC50 value of 0.4 µM compared to other cancer cells. The pharmacological ROS insult using the azaflavanone derivative increases the oxidative damage leading to high expression of apoptotic markers with increasing concentration. On compound treatment, the cells lose the metabolic flexibility accompanied by mitochondrial dysfunction leading to cell cycle arrest and apoptosis. Further, no compound mediated toxicity was observed in xenograft mouse model of prostate cancer at a concentration as high as 5 mg/kg. The tumor burden was reduced to 60% rendering the azaflavanone derivative a potential candidate in cancer therapeutics. Collectively, the compound triggers cell cycle arrest and ROS mediated oxidative stress sensitizing the cancerous cells towards apoptosis.


Asunto(s)
Apoptosis , Neoplasias de la Próstata , Masculino , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Neoplasias de la Próstata/patología , Proliferación Celular
8.
Colloids Surf B Biointerfaces ; 211: 112305, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34998178

RESUMEN

Erlotinib-based EGFR targeted therapy has proven significant clinical improvement against non-small cell lung cancer (NSCLC). However, the anticancer activity of Erlotinib (Ertb) is limited by the development of Ertb resistance and possess a challenge to clinicians and patients. To explore a better therapeutic strategy, we evaluated Ertb in combinations with different natural products. We identified that Ertb and Quercetin (Quer) combination is more synergistic against A549 and NCI H460 cells compared to Ertb with Fisetin/Carnosic acid/Luteolin. To further improve the efficacy and overcome the limitation of free therapeutics, Ertb and Quer loaded solid lipid nanoparticles (EQNPs) were prepared using Chitosan-MA-TPGS polymer by hot homogenization method. The drug-loaded nanoparticles (NPs) have shown high encapsulation efficiency (77% Ertb and 71.4% Quer) as well as small particle size of 87.3 ± 0.78 nm and positive zeta potential + 13.4 ± 1.12 mV. At pH 5.5, Ertb and Quer were released at their highest levels. We found that, EQNPs decreased the expression of P-glycoprotein (P-gp) and nuclear epidermal growth factor receptor (nEGFR). EQNPs increased the uptake of Ertb and Quer, and apoptosis induction in Ertb resistant A549/ER cells. Further, in vivo EQNPs formulation have shown increased uptake of nanoparticles in the lung tissue and significantly reduced the expression of nEGFR. Thus, EQNPs may be developed as a targeted medicine with minimum side effects for treatment of NSCLC to improve the quality of life and survival of NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/farmacología , Humanos , Liposomas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Nanopartículas/uso terapéutico , Fosfatidilinositol 3-Quinasas/farmacología , Fosfatidilinositol 3-Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Calidad de Vida , Quercetina/farmacología
9.
Bioorg Med Chem Lett ; 49: 128307, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34363936

RESUMEN

We report herein, the design, synthesis and study of anticancer properties of sulfenylated 2-phenylimidazo[1,2-a]pyridines and their analogues. A set of twenty sulfenylated imidazo[1, 2-a]pyridine derivatives were synthesized. Whereby elusive amendments to the imidazo[1,2-a]pyridine motif confer dramatic changes in functional affinity of a novel action to modulate anticancer activity in seven different human cancer cell lines i.e.: MDA MB 231 (breast), HepG2 (liver), Hela (cervical), A549 (lung), U87MG (glioblastoma), SKMEL-28 (skin melanoma) and DU-145 (prostate) by employing MTT assay. Among the series, compounds 4e (naphthalene), 4f (styrene) and 4h (thiomethyl) showed potent activity towards human liver cancer cells HepG2. Cell cycle analysis results revealed that these compounds arrested the cell cycle at G2/M phase and induced apoptosis in human liver cancer cells HepG2. It was further confirmed by Hoechst staining, Measurement of mitochondrial membrane potential (ΔΨm) and Annexin V-FITC assay.


Asunto(s)
Antineoplásicos/farmacología , Imidazoles/farmacología , Sulfuros/farmacología , Animales , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células HEK293 , Humanos , Imidazoles/síntesis química , Ratones , Sulfuros/síntesis química
10.
Bioorg Med Chem Lett ; 30(16): 127341, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32631542

RESUMEN

Cycloaddition reaction of 4-chloro-2-oxo-2H-chromene-3-carbaldehydes (3a-g) and 4-chloro-2H-chromene-3-carbaldehydes (7a-h) with activated alkynes (4a-b) provided the 2-oxo-2H-chromenyl-5-oxo-2,5-dihydrofuran-3-carboxylates (5a-n) and 2H-chromenyl-5-oxo-2,5-dihydrofuran-3-carboxylates (8a-p). All the prepared compounds were screened for anti-inflammatory activity. In vitro anti-inflammatory activity data demonstrated that the compounds 5g, 5i, 5k-l and 8f are effective among the tested compounds against TNF-α (1.108 ± 0.002, 0.423 ± 0.022, 0.047 ± 0.001, 0.070 ± 0.002 and 0.142 ± 0.001 µM) in comparison with standard compound Prednisolone (0.033 ± 0.002 µM). Based on in vitro results, three compounds (5i, 5k and 8f) have been selected for in vivo experiments and these compounds are identified as better compounds with respect to anti-inflammatory activity in LPS induced mice model. Compound 5i was identified as potent and showed significant reduction in TNF-α and IL-6.


Asunto(s)
Antiinflamatorios/farmacología , Furanos/farmacología , Interleucina-6/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Furanos/síntesis química , Furanos/química , Humanos , Interleucina-6/biosíntesis , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Ratones , Estructura Molecular , Relación Estructura-Actividad
11.
Eur J Pharm Biopharm ; 154: 377-386, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32717387

RESUMEN

N-acetyl-d-glucosamine-labelled dendrimers (NAG-Dend) were synthesized for the targeted delivery of camptothecin (CPT) to A549 human lung adenocarcinoma cells, which overexpress glucose transporters and lectin receptors. CPT loaded, NAG-Dend (NAG-Dend-CPT) exhibited more rapid and higher cellular uptake than the unlabelled dendrimer formulation (Dend-CPT), leading to enhanced cytotoxicity. Compared with native CPT, NAG-Dend-CPT was 4.5 times more toxic to A549 cells. The anticancer activity of the different CPT formulations was dose and time dependent. NAG-Dend-CPT also increased reactive oxygen species generation, induced higher apoptosis and showed greater inhibition of A549 cell migration than Dend-CPT. The selective accumulation of NAG-Dend in the lungs of tumour-bearing mice confirmed that the NAG-based dendrimer system can target lung metastasis tumours in a biological system. Overall, our results show that NAG-conjugated dendrimers could be a promising nanocarrier system for the delivery of anticancer drugs, including CPT, to human lung cancer cells.


Asunto(s)
Acetilglucosamina/metabolismo , Antineoplásicos/metabolismo , Dendrímeros/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Melanoma Experimental/metabolismo , Células A549 , Acetilglucosamina/administración & dosificación , Animales , Antineoplásicos/administración & dosificación , Camptotecina/administración & dosificación , Camptotecina/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Dendrímeros/administración & dosificación , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/metabolismo , Humanos , Masculino , Melanoma Experimental/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL
12.
Mol Pharm ; 17(6): 1859-1874, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32343904

RESUMEN

Glioblastoma multiforme (GBM) is one of the most aggressive tumors with a median survival of only 15 months. Effective therapeutics need to overcome the formidable challenge of crossing the blood-brain barrier (BBB). Receptors and transporters overexpressed on BCECs are being used for designing liposomes, polymers, polymeric micelles, peptides, and dendrimer-based drug carriers for combating brain tumors. Herein, using the orthotopic mouse glioblastoma model, we show that codelivering a small-molecule inhibitor of the JAK/STAT pathway (WP1066) and STAT3siRNA with nanometric (100-150 nm) α5ß1 integrin receptor-selective liposomes of RGDK-lipopeptide holds therapeutic promise in combating glioblastoma. Rh-PE (red)-labeled liposomes of RGDK-lipopeptide were found to be internalized in GL261 cells via integrin α5ß1 receptors. Intravenously administered near-infrared (NIR)-dye-labeled α5ß1 integrin receptor-selective liposomes of RGDK-lipopeptide were found to be accumulated preferentially in the mouse brain tumor tissue. Importantly, we show that iv injection of WP1066 (a commercially sold small-molecule inhibitor of the JAK/STAT pathway) and STAT3siRNA cosolubilized within the liposomes of RGDK-lipopeptide leads to significant inhibition (>350% compared to the untreated mice group) of orthotopically growing mouse glioblastoma. The present strategy may find future use in combating GBM.


Asunto(s)
Glioblastoma/metabolismo , ARN Interferente Pequeño/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Barrera Hematoencefálica/metabolismo , Células CHO , Línea Celular Tumoral , Cricetulus , Glioblastoma/genética , Integrina alfa5beta1/genética , Integrina alfa5beta1/metabolismo , Liposomas/química , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño/genética , Factor de Transcripción STAT3/genética
13.
Nanoscale ; 12(14): 7604-7621, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32232245

RESUMEN

In recent days, vanadium complexes and nanoparticles have received sustainable attention owing to their vast applications in different fields. In the present study, we report a facile approach for the synthesis of irregular dumbbell shaped vanadium pentoxide nanoparticles (V2O5 NPs: 30-60 nm) via the polyol-induced microwave irradiation process along with calcination. The as-synthesized nanoparticles were characterized using various physico-chemical techniques (e.g. XRD, TEM, FT-IR, DLS and XPS). The cell viability assay showed that V2O5 NPs could efficiently inhibit the proliferation of different cancer cells (B16F10, A549, and PANC1), depicting their anti-proliferative activity. However, V2O5 NPs did not exert significant cytotoxicity to the normal cells (CHO, HEK-293 and NRK-49F), suggesting their biocompatible nature. Interestingly, these nanoparticles inhibited the proliferation and migration of the endothelial cells (HUVECs and EA.hy926) and disrupted the blood vasculature in a chick embryo model, indicating their anti-angiogenic properties. The mechanistic study revealed that the effective internalization of V2O5 NPs generated intracellular reactive oxygen species (ROS) which in turn up-regulated p53 protein and down-regulated survivin protein in cancer cells, leading to the apoptosis process. Furthermore, the administration of V2O5 NPs to melanoma bearing C57BL6/J mice significantly increased their survivability as compared to the control untreated tumor bearing mice, exhibiting the therapeutic potential of the nanoparticles against melanoma. Additionally, the in vivo toxicity study demonstrated no toxic effect in mice upon sub-chronic exposure to V2O5 NPs. Altogether, we strongly believe that V2O5 NPs could intrinsically provide a new direction for alternative therapeutic treatment strategies for melanoma and other cancers by employing their anti-angiogenic properties in the future.


Asunto(s)
Nanopartículas del Metal/química , Neovascularización Fisiológica , Compuestos de Vanadio/química , Animales , Apoptosis/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Femenino , Hemólisis/efectos de los fármacos , Humanos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/toxicidad , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Trasplante Homólogo
14.
ACS Biomater Sci Eng ; 6(1): 690-704, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33463227

RESUMEN

The development of simple, cost-effective, and advanced multifunctional technology is the need of the hour to combat cancer as well as bacterial infections. There have been reports of silver nanoparticles (AgNPs), silver salts, and Prussian blue (PB) being used for medicinal purposes which are clinically approved. In this context, in the present communication, we incorporated PB and silver salts (silver nitrate) to develop silver PB analogue nanoparticles (SPBANPs), a new nanomedicine formulation as a safer and effective mode of treatment strategy (2-in-1) for both cancer and bacterial infections. Considering all fundamental issues of nanomedicine, along with understanding of the biological impact of PB, we designed a simple, fast, efficient, cheap, and eco-friendly method for the synthesis of [poly(N-vinyl-2-pyrrolidone)]-stabilized silver hexacyanoferrate nanoparticles (silver PB analogue: Ag3[Fe(CN)6] abbreviated as SPBANPs). Various analytical tools were used to analyze and characterize the nanomaterials (SPBANPs). The SPBANPs were highly stable for several weeks in various phosphate buffers with a range of physiological pH conditions (pH = 6-8). The nanoparticles showed biocompatibility in vivo in C57BL6/J mice that encouraged us to screen the nanoparticles for various biomedical applications. The SPBANPs themselves exhibited remarkable inhibition of cancer cell proliferation (B16F10, A549, MCF-7, and SK-OV-3) in vitro. Substantial inhibition of melanoma tumor growth was observed in the C57BL6/J mouse model (aggressive murine melanoma model: B16F10) after intraperitoneal administration of the SPBANPs without any anticancer drug. Additionally, the SPBANPs exhibited excellent antibacterial activity in various Gram-negative (Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa) and Gram-positive (Bacillus subtilis) bacteria. Interestingly, this nanoformulation itself works as a drug delivery vehicle, as well as an anticancer and antibacterial agent. The in vitro and in vivo results together demonstrate that this biocompatible nanoformulation (SPBANPs) without an anticancer drug or antibiotic could be explored to develop as a multifunctional therapeutic agent (2-in-1) for the treatment of cancer and bacterial infections in the near future.


Asunto(s)
Nanopartículas del Metal , Nanomedicina , Animales , Antibacterianos/farmacología , Ferrocianuros , Ratones , Plata
15.
ACS Appl Bio Mater ; 3(8): 5093-5102, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35021685

RESUMEN

Receptor-mediated endocytosis is key in the success of targeted nanomedicines for the treatment of cancer. Various receptors have been explored for the active targeting of anticancer drugs to avoid the drawbacks of conventional anticancer drugs. This research work aimed to investigate the potential of serotonin (ST)-conjugated Vit-E nanomicelles for the targeted delivery of irinotecan hydrochloride (IRI) to human prostate cancer cells. A ST receptor-targeting conjugate was synthesized by conjugating ST and d-α-tocopheryl polyethylene glycol succinate via a two-step synthesis reaction. The developed formulation demonstrated a size of about 14 nm, a negative zeta potential of around -20 mV, a high drug encapsulation efficiency, and sustained drug release over 48 h. Cytotoxicity studies revealed that ST-conjugated, IRI-loaded nanomicelles (IRI-STNM) were not only toxic to human prostate cancer cells but also eradicate these cells present in the form of 3D spheroids. This cytotoxicity of IRI-STNM was mediated through induction of apoptosis, reactive oxygen species generation, change in mitochondrial membrane potential, and inhibition of cell migration. Further, IRI-STNM performed significantly better than the native IRI and nontargeted nanomicelles, which was led by a higher cellular uptake of IRI-STNM, indicating the role of ST in targeting of drug-loaded nanomicelles.

16.
Eur J Med Chem ; 188: 111974, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31883489

RESUMEN

A series of 28 novel 1,2,3-triazole hybrids of myrrhanone B have been designed and synthesized by employing regioselective Cu catalyzed Huisgen 1,3-dipolar cycloaddition reaction in highly efficient manner. All the synthesized analogues were assessed for their antiproliferative potential against A549 (Lung), DU145 (Prostate), MDA-MB-231 (Breast), SiHa (Cervical), U87MG (Glioblastoma), PC-3 (Prostate), HT-29 (Colon), L132 (Normal lung) cell lines. Further, the synthesized hybrids have also been screened for anti-inflammatory activity (TNF-α and IL-1ß) and α-glucosidase inhibitory activity. The biological results revealed that compound 11 (meta hydroxy phenyl 1,2,3-triazole) and compound 29 (deoxyuridine 1,2,3-triazole) found to be the most potent antiproliferative ones against PC-3 cell line. Compound 11 (IC50: 6.57 ± 0.62 µM) showed six folds more potent than parent compound 1 (IC50: 40.67 ± 2.2 µM) and displayed almost identical inhibitory activity with standard doxorubicin (IC50: 5.05 ± 0.25 µM), whereas compound 29 (IC50: 10.85 ± 0.90 µM) exhibited four folds more potent than parent myrrhanone B (1). In view of potent activity of compounds 11 and 29 they have been subjected to detailed flowcytometry analysis. Compound 29 treated cells significantly increased the SubG1 population of cells indicative of apoptosis compared to compound 11. Further, the results of anti-inflammatory studies indicated that compounds 3, 6, 9, 27, 28, 29 and 30 exhibited significant inhibitory activity against both TNF-α and IL-1ß than the parent compound 1. Interestingly, compound 27 exhibited good activity towards inflammatory cytokines TNF-α (IC50: 7.83 ± 0.95 µM). Interestingly, α-glucosidase inhibitory assay results revealed that compounds 14 (IC50: 2.77 ± 0.59 µM) and 16 (IC50: 4.12 ± 0.77 µM) as the most potent ones. In fact, compound 14 exhibited highest activity and found to be several times more potent than the parent compound 1 as well as standard acarbose (IC50: 2124 ± 170 µM).


Asunto(s)
Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Commiphora/química , Inhibidores de Glicósido Hidrolasas/farmacología , Triazoles/farmacología , Triterpenos/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Humanos , Estructura Molecular , Resinas de Plantas , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química , Triterpenos/síntesis química , Triterpenos/aislamiento & purificación
17.
Cardiovasc Toxicol ; 20(3): 235-248, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31485892

RESUMEN

Arbutin is a glycoside reported for its anti-oxidant, anti-inflammatory and anti-tumor properties. However, the cardioprotective effect of Arbutin is not well established. The study aims to understand the effect of arbutin on isoproterenol (ISO)-induced cardiac hypertrophy in mice. The animals were pretreated with Arbutin for a week and ISO was administered for 10 days and then sacrificed. Cardiac injury markers such as creatinine kinase and lactate dehydrogenase concentrations were measured in the serum. The mRNA expression of cardiac hypertrophy markers namely atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were measured using qRT-PCR. The levels of pro-inflammatory cytokines TNF-α and IL-6 were quantified by ELISA in isolated tissues and serum. Other tissue anti-oxidant parameters such as GST, GSH, SOD and TBARS were also measured. TUNEL assay was performed to detect apoptosis. Histology studies were performed using H & E and Masson trichome staining. Immunoblot analysis was used to quantify the protein expression of TLR-4 and NF-κB. ISO-alone-treated group showed significant increase in CK-MB, LDH along with increase in hypertrophic markers ANP and BNP, TNF-α and IL-6 levels in serum and tissues and increased cardiomyocyte apoptosis. Anti-oxidant parameters were significantly decreased and TLR-4 and NF-κB protein expression was found to be upregulated in comparison to the control group. Pretreatment with Arbutin-exhibited significant inhibition of TLR-4/NF-κB pathway with decreased levels of pro-inflammatory cytokines and enhanced myocardial anti-oxidant status. Our study demonstrated that pretreatment with Arbutin exhibits marked protective effects on ISO-induced cardiac hypertrophy in mice. Thus, Arbutin may be used as potential pharmacological interventions in the management of cardiac hypertrophy.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Arbutina/farmacología , Cardiomegalia/prevención & control , Miocitos Cardíacos/efectos de los fármacos , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Remodelación Ventricular/efectos de los fármacos , Animales , Factor Natriurético Atrial/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiotoxicidad , Modelos Animales de Enfermedad , Interleucina-6/sangre , Isoproterenol , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Péptido Natriurético Encefálico/sangre , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal , Factor de Necrosis Tumoral alfa/sangre
18.
Nanomedicine ; 21: 102043, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31247312

RESUMEN

Dendrimers have proven to be effective for drug delivery and their biodisposition varies with change on their surface, generation and core. In an effort to understand the role of critical nanoscale design parameters, we developed a novel hybrid dendrimer approach to harness unique features of individual dendrimers and create a nano-assembly. We report an easy in situ method of creating hybrid dendrimer nano-assembly by mixing G4.0 PAMAM (-NH2) and G3.5 PAMAM (-COONa) dendrimers with a chemotherapeutic drug docetaxel (DTX). Zeta potential, HR-TEM, 1H-NMR proved the formation of nano-assembly. In vitro dissolution, release studies revealed pH dependent dissolution and sustained drug release. Cellular uptake, cytotoxicity, and flow cytometric analysis in human/mouse glioblastoma cells indicated the effectiveness of hybrid dendrimers. The oral administration of the hybrid dendrimers showed pharmacokinetic equivalence to intravenous injection of commercially available Taxotere®. Hybrid dendrimer concept provides much needed fine-tuning to create multistage next-generation dendritic platform in nanomedicine.


Asunto(s)
Dendrímeros/farmacología , Docetaxel/farmacología , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Administración Oral , Animales , Línea Celular Tumoral , Dendrímeros/química , Docetaxel/química , Xenoinjertos , Humanos , Ratones , Nanocompuestos/química , Nanomedicina/tendencias , Neoplasias/genética , Neoplasias/patología , Nylons/química , Nylons/farmacología
19.
Eur J Pharm Sci ; 137: 104978, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31254645

RESUMEN

Globally, one in six deaths is reported due to cancer suggesting the critical need for development of advanced treatment regimens. In this study, solid lipid nanoparticles (SLN) were prepared and appended with polyethylene glycol (PEGylated) galactose and a multikinase inhibitor sorafenib (SRFB) was used as chemotherapeutic drug, for treating hepatocellular carcinoma (HCC). The nanoparticles were evaluated for in-vitro and in-vivo performances to showcase the targeting efficiency and therapeutic benefits of the sorafenib loaded ligand conjugated nanoparticles (GAL-SSLN). When compared with SRFB or Sorafenib loaded SLN, GAL-SSLN showed superior cytotoxicity and apoptosis in HepG2 (human hepatocellular carcinoma cells). In addition, in-vivo pharmacokinetics and real time biodistribution studies in BALB/c mice showed that the surface conjugation of nanoparticles with galactose resulted in better pharmacokinetic performance and targeted delivery of the nanoparticles to liver. Results indicated that GAL-SSLN showed promising attributes in terms of targeting sorafenib to liver and therapeutic efficacy.


Asunto(s)
Antineoplásicos/administración & dosificación , Carcinoma Hepatocelular/tratamiento farmacológico , Galactosa/administración & dosificación , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas/administración & dosificación , Sorafenib/administración & dosificación , Administración Oral , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Proliferación Celular/efectos de los fármacos , Liberación de Fármacos , Galactosa/química , Galactosa/farmacocinética , Células Hep G2 , Humanos , Lípidos/administración & dosificación , Lípidos/química , Lípidos/farmacocinética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos BALB C , Nanopartículas/química , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Sorafenib/química , Sorafenib/farmacocinética , Distribución Tisular
20.
Methods Mol Biol ; 1974: 215-221, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31099006

RESUMEN

Gold nanoparticles (GNPs) have emerged as a potential scaffold for a wide range of biomedical applications such as biosensing, drug delivery, and imaging. However, the toxicity of nanoparticles remains a challenge for using them in biological system. The morphology and surface chemistry of GNP can be manipulated by their method of preparation. GNP can be synthesized and functionalized by various methods. This chapter illustrates the synthesis of highly biocompatible GNP using a natural gum, i.e., xanthan gum (XG). Moreover, due to the presence of mannose moiety in XG, these XG-stabilized GNP may also act as self-targeted drug carriers for the delivery of chemotherapeutic agents/siRNA/shRNA to mannose receptor overexpressing cancer cells.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas del Metal/química , Neoplasias/terapia , Línea Celular Tumoral , Oro/química , Humanos , Nanopartículas del Metal/uso terapéutico , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA