Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Am Heart Assoc ; 5(3): e003208, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27001967

RESUMEN

BACKGROUND: Nitric oxide synthase uncoupling occurs under conditions of oxidative stress modifying the enzyme's function so it generates superoxide rather than nitric oxide. Nitric oxide synthase uncoupling occurs with chronic pressure overload, and both are ameliorated by exogenous tetrahydrobiopterin (BH4)-a cofactor required for normal nitric oxide synthase function-supporting a pathophysiological link. Genetically augmenting BH4 synthesis in endothelial cells fails to replicate this benefit, indicating that other cell types dominate the effects of exogenous BH4 administration. We tested whether the primary cellular target of BH4 is the cardiomyocyte or whether other novel mechanisms are invoked. METHODS AND RESULTS: Mice with cardiomyocyte-specific overexpression of GTP cyclohydrolase 1 (mGCH1) and wild-type littermates underwent transverse aortic constriction. The mGCH1 mice had markedly increased myocardial BH4 and, unlike wild type, maintained nitric oxide synthase coupling after transverse aortic constriction; however, the transverse aortic constriction-induced abnormalities in cardiac morphology and function were similar in both groups. In contrast, exogenous BH4 supplementation improved transverse aortic constricted hearts in both groups, suppressed multiple inflammatory cytokines, and attenuated infiltration of inflammatory macrophages into the heart early after transverse aortic constriction. CONCLUSIONS: BH4 protection against adverse remodeling in hypertrophic cardiac disease is not driven by its prevention of myocardial nitric oxide synthase uncoupling, as presumed previously. Instead, benefits from exogenous BH4 are mediated by a protective effect coupled to suppression of inflammatory pathways and myocardial macrophage infiltration.


Asunto(s)
Antiinflamatorios/farmacología , Biopterinas/análogos & derivados , Fármacos Cardiovasculares/farmacología , Hipertrofia Ventricular Izquierda/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Óxido Nítrico Sintasa/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Biopterinas/farmacología , Citocinas/metabolismo , Citoprotección , Modelos Animales de Enfermedad , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/metabolismo , Humanos , Hipertrofia Ventricular Izquierda/enzimología , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Mediadores de Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Transgénicos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Óxido Nítrico/metabolismo , Oxidación-Reducción , Transducción de Señal , Superóxidos/metabolismo , Factores de Tiempo , Disfunción Ventricular Izquierda/enzimología , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/prevención & control
2.
Am J Physiol Heart Circ Physiol ; 309(8): H1271-80, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26254336

RESUMEN

Levels of the HER2/ErbB2 protein in the heart are upregulated in some women during breast cancer therapy, and these women are at high risk for developing heart dysfunction after sequential treatment with anti-ErbB2/trastuzumab or doxorubicin. Doxorubicin is known to increase oxidative stress in the heart, and thus we considered the possibility that ErbB2 protein influences the status of cardiac antioxidant defenses in cardiomyocytes. In this study, we measured reactive oxygen species (ROS) in cardiac mitochondria and whole hearts from mice with cardiac-specific overexpression of ErbB2 (ErbB2(tg)) and found that, compared with control mice, high levels of ErbB2 in myocardium result in lower levels of ROS in mitochondria (P = 0.0075) and whole hearts (P = 0.0381). Neonatal cardiomyocytes isolated from ErbB2(tg) hearts have lower ROS levels and less cellular death (P < 0.0001) following doxorubicin treatment. Analyzing antioxidant enzyme levels and activities, we found that ErbB2(tg) hearts have increased levels of glutathione peroxidase 1 (GPx1) protein (P < 0.0001) and GPx activity (P = 0.0031) in addition to increased levels of two known GPx activators, c-Abl (P = 0.0284) and Arg (P < 0.0001). Interestingly, although mitochondrial ROS emission is reduced in the ErbB2(tg) hearts, oxygen consumption rates and complex I activity are similar to control littermates. Compared with these in vivo studies, H9c2 cells transfected with ErbB2 showed less cellular toxicity and produced less ROS (P < 0.0001) after doxorubicin treatment but upregulated GR activity (P = 0.0237) instead of GPx. Our study shows that ErbB2-dependent signaling contributes to antioxidant defenses and suggests a novel mechanism by which anticancer therapies involving ErbB2 antagonists can harm myocardial structure and function.


Asunto(s)
Antineoplásicos/toxicidad , Antioxidantes/metabolismo , Doxorrubicina/toxicidad , Glutatión Peroxidasa/metabolismo , Cardiopatías/prevención & control , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Receptor ErbB-2/metabolismo , Animales , Animales Recién Nacidos , Muerte Celular/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Glutatión Reductasa/metabolismo , Cardiopatías/inducido químicamente , Cardiopatías/enzimología , Cardiopatías/genética , Cardiopatías/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Ratas , Receptor ErbB-2/genética , Glutatión Peroxidasa GPX1
3.
Antioxid Redox Signal ; 19(11): 1185-97, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23919584

RESUMEN

AIMS: Nitroxyl (HNO) interacts with thiols to act as a redox-sensitive modulator of protein function. It enhances sarcoplasmic reticular Ca(2+) uptake and myofilament Ca(2+) sensitivity, improving cardiac contractility. This activity has led to clinical testing of HNO donors for heart failure. Here we tested whether HNO alters the inhibitory interaction between phospholamban (PLN) and the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) in a redox-dependent manner, improving Ca(2+) handling in isolated myocytes/hearts. RESULTS: Ventriculocytes, sarcoplasmic reticulum (SR) vesicles, and whole hearts were isolated from control (wildtype [WT]) or PLN knockout (pln(-/-)) mice. Compared to WT, pln(-/-) myocytes displayed enhanced resting sarcomere shortening, peak Ca(2+) transient, and blunted ß-adrenergic responsiveness. HNO stimulated shortening, relaxation, and Ca(2+) transient in WT cardiomyocytes, and evoked positive inotropy/lusitropy in intact hearts. These changes were markedly blunted in pln(-/-) cells/hearts. HNO enhanced SR Ca(2+) uptake in WT but not pln(-/-) SR-vesicles. Spectroscopic studies in insect cell microsomes expressing SERCA2a±PLN showed that HNO increased Ca(2+)-dependent SERCA2a conformational flexibility but only when PLN was present. In cardiomyocytes, HNO achieved this effect by stabilizing PLN in an oligomeric disulfide bond-dependent configuration, decreasing the amount of free inhibitory monomeric PLN available. INNOVATION: HNO-dependent redox changes in myocyte PLN oligomerization relieve PLN inhibition of SERCA2a. CONCLUSIONS: PLN plays a central role in HNO-induced enhancement of SERCA2a activity, leading to increased inotropy/lusitropy in intact myocytes and hearts. PLN remains physically associated with SERCA2a; however, less monomeric PLN is available resulting in decreased inhibition of the enzyme. These findings offer new avenues to improve Ca(2+) handling in failing hearts.


Asunto(s)
Antioxidantes/farmacología , Proteínas de Unión al Calcio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Óxidos de Nitrógeno/farmacología , Multimerización de Proteína/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Cardiotónicos/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Disulfuros , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Técnicas In Vitro , Ratones , Ratones Noqueados , Microsomas/metabolismo , Oxidación-Reducción/efectos de los fármacos , Fosforilación , Unión Proteica , Conformación Proteica/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química
4.
Int J Biochem Cell Biol ; 44(12): 2106-15, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22939972

RESUMEN

Previously we reported that the sesquiterpene lactone parthenolide induces oxidative stress in cardiac myocytes, which blocks Janus kinase (JAK) activation by the interleukin 6 (IL-6)-type cytokines. One implication suggested by this finding is that IL-6 signaling is dependent upon cellular anti-oxidant defenses or redox status. Therefore, the present study was undertaken to directly test the hypothesis that JAK1 signaling by the IL-6-type cytokines in cardiac myocytes is impaired by glutathione (GSH) depletion, since this tripeptide is one of the major anti-oxidant molecules and redox-buffers in cells. Cardiac myocytes were pretreated for 6h with l-buthionine-sulfoximine (BSO) to inhibit GSH synthesis. After 24h, cells were dosed with the IL-6-like cytokine, leukemia inhibitory factor (LIF). BSO treatment decreased GSH levels and dose-dependently attenuated activation of JAK1, Signal Transducer and Activator of Transcription 3 (STAT3), and extracellular signal regulated kinases 1 and 2 (ERK1/2). Addition of glutathione monoethyl ester, which is cleaved intracellularly to GSH, prevented attenuation of LIF-induced JAK1 and STAT3 activation, as did the reductant N-acetyl-cysteine. Unexpectedly, LIF-induced STAT1 activation was unaffected by GSH depletion. Evidence was found that STAT3 is more resistant than STAT1 to intermolecular disulfide bond formation under oxidizing conditions and more likely to retain the monomeric form, suggesting that conformational differences explain the differential effect of GSH depletion on STAT1 and STAT3. Overall, our findings indicate that activation of both JAK1 and STAT3 is redox-sensitive and the character of IL-6 type cytokine signaling in cardiac myocytes is sensitive to changes in the cellular redox status. In cardiac myocytes, activation of STAT1 may be favored over STAT3 under oxidizing conditions due to GSH depletion and/or augmented reactive oxygen species production, such as in ischemia-reperfusion and heart failure.


Asunto(s)
Glutatión/metabolismo , Janus Quinasa 1/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Miocitos Cardíacos/metabolismo , Factor de Transcripción STAT3/metabolismo , Acetilcisteína/farmacología , Animales , Butionina Sulfoximina/farmacología , Células Cultivadas , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Depuradores de Radicales Libres/farmacología , Glutatión/fisiología , Factor Inhibidor de Leucemia/fisiología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo , Unión Proteica , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT1/metabolismo
5.
J Gen Physiol ; 139(6): 479-91, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22585969

RESUMEN

The net emission of hydrogen peroxide (H(2)O(2)) from mitochondria results from the balance between reactive oxygen species (ROS) continuously generated in the respiratory chain and ROS scavenging. The relative contribution of the two major antioxidant systems in the mitochondrial matrix, glutathione (GSH) and thioredoxin (Trx), has not been assessed. In this paper, we examine this key question via combined experimental and theoretical approaches, using isolated heart mitochondria from mouse, rat, and guinea pig. As compared with untreated control mitochondria, selective inhibition of Trx reductase with auranofin along with depletion of GSH with 2,4-dinitrochlorobenzene led to a species-dependent increase in H(2)O(2) emission flux of 17, 11, and 6 fold in state 4 and 15, 7, and 8 fold in state 3 for mouse, rat, and guinea pig mitochondria, respectively. The maximal H(2)O(2) emission as a percentage of the total O(2) consumption flux was 11%/2.3% for mouse in states 4 and 3 followed by 2%/0.25% and 0.74%/0.29% in the rat and guinea pig, respectively. A minimal computational model accounting for the kinetics of GSH/Trx systems was developed and was able to simulate increase in H(2)O(2) emission fluxes when both scavenging systems were inhibited separately or together. Model simulations suggest that GSH/Trx systems act in concert. When the scavenging capacity of either one of them saturates during H(2)O(2) overload, they relieve each other until complete saturation, when maximal ROS emission occurs. Quantitatively, these results converge on the idea that GSH/Trx scavenging systems in mitochondria are both essential for keeping minimal levels of H(2)O(2) emission, especially during state 3 respiration, when the energetic output is maximal. This suggests that the very low levels of H(2)O(2) emission observed during forward electron transport in the respiratory chain are a result of the well-orchestrated actions of the two antioxidant systems working continuously to offset ROS production.


Asunto(s)
Antioxidantes/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias Cardíacas/metabolismo , Tiorredoxinas/metabolismo , Animales , Respiración de la Célula/fisiología , Transporte de Electrón/fisiología , Cobayas , Cinética , Ratones , Modelos Teóricos , Ratas , Especies Reactivas de Oxígeno/metabolismo
6.
BJU Int ; 110(10): 1455-62, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22508007

RESUMEN

OBJECTIVES: To examine the acute effects of sunitinib on inotropic function, intracellular Ca(2+) transients, myofilament Ca(2+) sensitivity and generation of reactive oxygen species (ROS) in human multicellular myocardium and isolated mouse cardiomyocytes. To search for microRNAs as suitable biomarkers for indicating toxic cardiac effects. PATIENTS AND METHODS: After exposure to sunitinib (0.1-10 µg/mL) developed force, diastolic tension and kinetic variables were assessed in isolated human myocardium. Changes in myocyte sarcomere length, whole-cell calcium transients, myofilament force-Ca(2+) relationship, and ROS generation were examined in isolated ventricular mouse cardiomyocytes. Microarray and realtime-PCR were used to screen for differentially expressed microRNAs in cultured cardiomyocytes that were exposed for 24 h to sunitinib. RESULTS: We found that higher concentrations of sunitinib (1 and 10 µg/mL) decreased developed force at 30 minutes 76.9 + 2.8 and 54.5 + 6.3%, compared to 96.1 + 2.6% in controls (P < 0.01). Sunitinib exposure significantly decreased sarcomere shortening and Ca2+ transients. Myofilament Ca(2+) sensitivity was not altered, while ROS levels were significantly increased after exposure to the drug. MicroRNA expression patterns were not altered by sunitinib. CONCLUSIONS: Sunitinib elicits a dose-dependent negative inotropic effect in myocardium, accompanied by a decline in intracellular Ca(2+) and increased ROS generation. In clinical practice, these cardiotoxic effects should be considered in cases where cardiac concentrations of sunitinib could be increased.


Asunto(s)
Antineoplásicos/efectos adversos , Indoles/efectos adversos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/efectos adversos , Pirroles/efectos adversos , Anciano , Animales , Calcio/metabolismo , Relación Dosis-Respuesta a Droga , Espectroscopía de Resonancia por Spin del Electrón , Femenino , Corazón/efectos de los fármacos , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sarcómeros/efectos de los fármacos , Sunitinib
7.
J Biol Chem ; 286(38): 33669-77, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21832082

RESUMEN

Respiring mitochondria produce H(2)O(2) continuously. When production exceeds scavenging, H(2)O(2) emission occurs, endangering cell functions. The mitochondrial peroxidase peroxiredoxin-3 reduces H(2)O(2) to water using reducing equivalents from NADPH supplied by thioredoxin-2 (Trx2) and, ultimately, thioredoxin reductase-2 (TrxR2). Here, the contribution of this mitochondrial thioredoxin system to the control of H(2)O(2) emission was studied in isolated mitochondria and cardiomyocytes from mouse or guinea pig heart. Energization of mitochondria by the addition of glutamate/malate resulted in a 10-fold decrease in the ratio of oxidized to reduced Trx2. This shift in redox state was accompanied by an increase in NAD(P)H and was dependent on TrxR2 activity. Inhibition of TrxR2 in isolated mitochondria by auranofin resulted in increased H(2)O(2) emission, an effect that was seen under both forward and reverse electron transport. This effect was independent of changes in NAD(P)H or membrane potential. The effects of auranofin were reproduced in cardiomyocytes; superoxide and H(2)O(2) levels increased, but similarly, there was no effect on NAD(P)H or membrane potential. These data show that energization of mitochondria increases the antioxidant potential of the TrxR2/Trx2 system and that inhibition of TrxR2 results in increased H(2)O(2) emission through a mechanism that is independent of changes in other redox couples.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Mitocondrias Cardíacas/enzimología , Tiorredoxina Reductasa 2/metabolismo , Animales , Auranofina/farmacología , Dinitroclorobenceno/farmacología , Transporte de Electrón/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Pruebas de Enzimas , Glutatión/metabolismo , Cobayas , Ratones , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Peroxiredoxina III/metabolismo , Tiorredoxina Reductasa 2/antagonistas & inhibidores , Tiorredoxinas/metabolismo
8.
Antioxid Redox Signal ; 14(9): 1687-98, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21235349

RESUMEN

The nitric oxide (NO(•)) sibling, nitroxyl or nitrosyl hydride (HNO), is emerging as a molecule whose pharmacological properties include providing functional support to failing hearts. HNO also preconditions myocardial tissue, protecting it against ischemia-reperfusion injury while exerting vascular antiproliferative actions. In this review, HNO's peculiar cardiovascular assets are discussed in light of its unique chemistry that distinguish HNO from NO(•) as well as from reactive oxygen and nitrogen species such as the hydroxyl radical and peroxynitrite. Included here is a discussion of the possible routes of HNO formation in the myocardium and its chemical targets in the heart. HNO has been shown to have positive inotropic/lusitropic effects under normal and congestive heart failure conditions in animal models. The mechanistic intricacies of the beneficial cardiac effects of HNO are examined in cellular models. In contrast to ß-receptor/cyclic adenosine monophosphate/protein kinase A-dependent enhancers of myocardial performance, HNO uses its "thiophylic" nature as a vehicle to interact with redox switches such as cysteines, which are located in key components of the cardiac electromechanical machinery ruling myocardial function. Here, we will briefly review new features of HNO's cardiovascular effects that when combined with its positive inotropic/lusitropic action may render HNO donors an attractive addition to the current therapeutic armamentarium for treating patients with acutely decompensated congestive heart failure.


Asunto(s)
Óxidos de Nitrógeno/metabolismo , Animales , Humanos , Modelos Biológicos , Miocardio/metabolismo , Miocardio/patología , Óxido Nítrico Sintasa/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Compuestos de Sulfhidrilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA