Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cells ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891084

RESUMEN

Mutations in p53 and KRAS are seen in most cases of colon cancer. The impact of these mutations on signaling pathways related to cancer growth has been studied in depth, but relatively less is known on their effects on amino acid transporters in cancer cells. This represents a significant knowledge gap because amino acid nutrition in cancer cells profoundly influences macropinocytosis and ferroptosis, two processes with opposing effects on tumor growth. Here, we used isogenic colon cancer cell lines to investigate the effects of p53 deletion and KRAS activation on two amino acid transporters relevant to macropinocytosis (SLC38A5) and ferroptosis (SLC7A11). Our studies show that the predominant effect of p53 deletion is to induce SLC7A11 with the resultant potentiation of antioxidant machinery and protection of cancer cells from ferroptosis, whereas KRAS activation induces not only SLC7A11 but also SLC38A5, thus offering protection from ferroptosis as well as improving amino acid nutrition in cancer cells via accelerated macropinocytosis. Niclosamide, an FDA-approved anti-helminthic, blocks the functions of SLC7A11 and SLC38A5, thus inducing ferroptosis and suppressing macropinocytosis, with the resultant effective reversal of tumor-promoting actions of oncogenic changes in p53 and KRAS. These findings underscore the potential of this drug in colon cancer treatment.


Asunto(s)
Neoplasias del Colon , Ferroptosis , Niclosamida , Pinocitosis , Proteínas Proto-Oncogénicas p21(ras) , Proteína p53 Supresora de Tumor , Humanos , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Pinocitosis/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Línea Celular Tumoral , Niclosamida/farmacología , Niclosamida/uso terapéutico , Antineoplásicos/farmacología , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Mutación/genética
3.
Antioxidants (Basel) ; 13(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539825

RESUMEN

The amino acid transporters SLC38A5 and SLC7A11 are upregulated in triple-negative breast cancer (TNBC). SLC38A5 transports glutamine, methionine, glycine and serine, and therefore activates mTOR signaling and induces epigenetic modifications. SLC7A11 transports cystine and increases the cellular levels of glutathione, which protects against oxidative stress and lipid peroxidation via glutathione peroxidase, a seleno (Se)-enzyme. The primary source of Se is dietary Se-methionine (Se-Met). Since SLC38A5 transports methionine, we examined its role in Se-Met uptake in TNBC cells. We found that SLC38A5 interacts with methionine and Se-Met with comparable affinity. We also examined the influence of Se-Met on Nrf2 in TNBC cells. Se-Met activated Nrf2 and induced the expression of Nrf2-target genes, including SLC7A11. Our previous work discovered niclosamide, an antiparasitic drug, as a potent inhibitor of SLC38A5. Here, we found SLC7A11 to be inhibited by niclosamide with an IC50 value in the range of 0.1-0.2 µM. In addition to the direct inhibition of SLC38A5 and SLC7A11, the pretreatment of TNBC cells with niclosamide reduced the expression of both transporters. Niclosamide decreased the glutathione levels, inhibited proliferation, suppressed GPX4 expression, increased lipid peroxidation, and induced ferroptosis in TNBC cells. It also significantly reduced the growth of the TNBC cell line MB231 in mouse xenografts.

4.
Cancers (Basel) ; 16(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38339256

RESUMEN

Aerobic glycolysis in cancer cells, originally observed by Warburg 100 years ago, which involves the production of lactate as the end product of glucose breakdown even in the presence of adequate oxygen, is the foundation for the current interest in the cancer-cell-specific reprograming of metabolic pathways. The renewed interest in cancer cell metabolism has now gone well beyond the original Warburg effect related to glycolysis to other metabolic pathways that include amino acid metabolism, one-carbon metabolism, the pentose phosphate pathway, nucleotide synthesis, antioxidant machinery, etc. Since glucose and amino acids constitute the primary nutrients that fuel the altered metabolic pathways in cancer cells, the transporters that mediate the transfer of these nutrients and their metabolites not only across the plasma membrane but also across the mitochondrial and lysosomal membranes have become an integral component of the expansion of the Warburg effect. In this review, we focus on the interplay between these transporters and metabolic pathways that facilitates metabolic reprogramming, which has become a hallmark of cancer cells. The beneficial outcome of this recent understanding of the unique metabolic signature surrounding the Warburg effect is the identification of novel drug targets for the development of a new generation of therapeutics to treat cancer.

5.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834119

RESUMEN

Sigma receptors are non-opiate/non-phencyclidine receptors that bind progesterone and/or heme and also several unrelated xenobiotics/chemicals. They reside in the plasma membrane and in the membranes of the endoplasmic reticulum, mitochondria, and nucleus. Until recently, the biology/pharmacology of these proteins focused primarily on their role in neuronal functions in the brain/retina. However, there have been recent developments in the field with the discovery of unexpected roles for these proteins in iron/heme homeostasis. Sigma receptor 1 (S1R) regulates the oxidative stress-related transcription factor NRF2 and protects against ferroptosis, an iron-induced cell death process. Sigma receptor 2 (S2R), which is structurally unrelated to S1R, complexes with progesterone receptor membrane components PGRMC1 and PGRMC2. S2R, PGRMC1, and PGRMC2, either independently or as protein-protein complexes, elicit a multitude of effects with a profound influence on iron/heme homeostasis. This includes the regulation of the secretion of the iron-regulatory hormone hepcidin, the modulation of the activity of mitochondrial ferrochelatase, which catalyzes iron incorporation into protoporphyrin IX to form heme, chaperoning heme to specific hemoproteins thereby influencing their biological activity and stability, and protection against ferroptosis. Consequently, S1R, S2R, PGRMC1, and PGRMC2 potentiate disease progression in hemochromatosis and cancer. These new discoveries usher this intriguing group of non-traditional progesterone receptors into an unchartered territory in biology and medicine.


Asunto(s)
Ferroptosis , Receptores sigma , Receptores sigma/metabolismo , Hemo/metabolismo , Receptores de Progesterona/metabolismo , Hierro , Homeostasis
6.
Cancers (Basel) ; 15(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36765717

RESUMEN

Niclosamide, a drug used to treat tapeworm infection, possesses anticancer effects by interfering with multiple signaling pathways. Niclosamide also causes intracellular acidification. We have recently discovered that the amino acid transporter SLC38A5, an amino acid-dependent Na+/H+ exchanger, activates macropinocytosis in cancer cells via amino acid-induced intracellular alkalinization. Therefore, we asked whether niclosamide will block basal and SLC38A5-mediated macropinocytosis via intracellular acidification. We monitored macropinocytosis in pancreatic and breast cancer cells using TMR-dextran and the function of SLC38A5 by measuring Li+-stimulated serine uptake. The peptide transporter activity was measured by the uptake of glycylsarcosine. Treatment of the cancer cells with niclosamide caused intracellular acidification. The drug blocked basal and serine-induced macropinocytosis with differential potency, with an EC50 of ~5 µM for the former and ~0.4 µM for the latter. The increased potency for amino acid-mediated macropinocytosis is due to direct inhibition of SLC38A5 by niclosamide in addition to the ability of the drug to cause intracellular acidification. The drug also inhibited the activity of the H+-coupled peptide transporter. We conclude that niclosamide induces nutrient starvation in cancer cells by blocking macropinocytosis, SLC38A5 and the peptide transporter. These studies uncover novel, hitherto unknown, mechanisms for the anticancer efficacy of this antihelminthic.

7.
Biosci Rep ; 43(1)2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36408981

RESUMEN

Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder in women with components of significant genetic predisposition and possibly multiple, but not yet clearly defined, triggers. This disorder shares several clinical features with hemochromatosis, a genetically defined inheritable disorder of iron overload, which includes insulin resistance, increased adiposity, diabetes, fatty liver, infertility, and hyperandrogenism. A notable difference between the two disorders, however, is that the clinical symptoms in PCOS appear at much younger age whereas they become evident in hemochromatosis at a much later age. Nonetheless, noticeable accumulation of excess iron in the body is a common finding in both disorders even at adolescence. Hepcidin, the iron-regulatory hormone secreted by the liver, is reduced in both disorders and consequently increases intestinal iron absorption. Recent studies have shown that gut bacteria play a critical role in the control of iron absorption in the intestine. As dysbiosis is a common finding between PCOS and hemochromatosis, changes in bacterial composition in the gut may represent another cause for iron overload in both diseases via increased iron absorption. This raises the possibility that strategies to prevent accumulation of excess iron with iron chelators and/or probiotics may have therapeutic potential in the management of polycystic ovary syndrome.


Asunto(s)
Hemocromatosis , Hiperandrogenismo , Resistencia a la Insulina , Sobrecarga de Hierro , Síndrome del Ovario Poliquístico , Adolescente , Femenino , Humanos , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/genética , Hemocromatosis/genética , Hemocromatosis/terapia , Hiperandrogenismo/genética , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/complicaciones , Hierro/metabolismo
8.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35743100

RESUMEN

NaCT mediates citrate uptake in the liver cell line HepG2. When these cells were exposed to iron (Fe3+), citrate uptake/binding as monitored by the association of [14C]-citrate with cells increased. However, there was no change in NaCT expression and function, indicating that NaCT was not responsible for this Fe3+-induced citrate uptake/binding. Interestingly however, the process exhibited substrate selectivity and saturability as if the process was mediated by a transporter. Notwithstanding these features, subsequent studies demonstrated that the iron-induced citrate uptake/binding did not involve citrate entry into cells; instead, the increase was due to the formation of citrate-Fe3+ chelate that adsorbed to the cell surface. Surprisingly, the same phenomenon was observed in culture wells without HepG2 cells, indicating the adsorption of the citrate-Fe3+ chelate to the plastic surface of culture wells. We used this interesting phenomenon as a simple screening technique for new iron chelators with the logic that if another iron chelator is present in the assay system, it would compete with citrate for binding to Fe3+ and prevent the formation and adsorption of citrate-Fe3+ to the culture well. This technique was validated with the known iron chelators deferiprone and deferoxamine, and with the bacterial siderophore 2,3-dihydroxybenzoic acid and the catechol carbidopa.


Asunto(s)
Artefactos , Ácido Cítrico , Ácido Cítrico/farmacología , Deferoxamina/farmacología , Compuestos Férricos/farmacología , Hierro/metabolismo , Quelantes del Hierro/farmacología , Plásticos
9.
Nutrients ; 13(9)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34579098

RESUMEN

ß-Hydroxy-ß-methylbutyrate (HMB), a leucine metabolite, is used as a nutritional ingredient to improve skeletal muscle health. Preclinical studies indicate that this supplement also elicits significant benefits in the brain; it promotes neurite outgrowth and prevents age-related reductions in neuronal dendrites and cognitive performance. As orally administered HMB elicits these effects in the brain, we infer that HMB crosses the blood-brain barrier (BBB). However, there have been no reports detailing the transport mechanism for HMB in BBB. Here we show that HMB is taken up in the human BBB endothelial cell line hCMEC/D3 via H+-coupled monocarboxylate transporters that also transport lactate and ß-hydroxybutyrate. MCT1 (monocarboxylate transporter 1) and MCT4 (monocarboxylate transporter 4) belonging to the solute carrier gene family SLC16 (solute carrier, gene family 16) are involved, but additional transporters also contribute to the process. HMB uptake in BBB endothelial cells results in intracellular acidification, demonstrating cotransport with H+. Since HMB is known to activate mTOR with potential to elicit transcriptomic changes, we examined the influence of HMB on the expression of selective transporters. We found no change in MCT1 and MCT4 expression. Interestingly, the expression of LAT1 (system L amino acid transporter 1), a high-affinity transporter for branched-chain amino acids relevant to neurological disorders such as autism, is induced. This effect is dependent on mTOR (mechanistic target of rapamycine) activation by HMB with no involvement of histone deacetylases. These studies show that HMB in systemic circulation can cross the BBB via carrier-mediated processes, and that it also has a positive influence on the expression of LAT1, an important amino acid transporter in the BBB.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Barrera Hematoencefálica/citología , Portadores de Fármacos/metabolismo , Células Endoteliales/metabolismo , Simportadores/metabolismo , Valeratos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Línea Celular , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato , Simportadores/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
10.
Biochem J ; 478(3): 463-486, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33544126

RESUMEN

NaCT/SLC13A5 is a Na+-coupled transporter for citrate in hepatocytes, neurons, and testes. It is also called mINDY (mammalian ortholog of 'I'm Not Dead Yet' in Drosophila). Deletion of Slc13a5 in mice leads to an advantageous phenotype, protecting against diet-induced obesity, and diabetes. In contrast, loss-of-function mutations in SLC13A5 in humans cause a severe disease, EIEE25/DEE25 (early infantile epileptic encephalopathy-25/developmental epileptic encephalopathy-25). The difference between mice and humans in the consequences of the transporter deficiency is intriguing but probably explainable by the species-specific differences in the functional features of the transporter. Mouse Slc13a5 is a low-capacity transporter, whereas human SLC13A5 is a high-capacity transporter, thus leading to quantitative differences in citrate entry into cells via the transporter. These findings raise doubts as to the utility of mouse models to evaluate NaCT biology in humans. NaCT-mediated citrate entry in the liver impacts fatty acid and cholesterol synthesis, fatty acid oxidation, glycolysis, and gluconeogenesis; in neurons, this process is essential for the synthesis of the neurotransmitters glutamate, GABA, and acetylcholine. Thus, SLC13A5 deficiency protects against obesity and diabetes based on what the transporter does in hepatocytes, but leads to severe brain deficits based on what the transporter does in neurons. These beneficial versus detrimental effects of SLC13A5 deficiency are separable only by the blood-brain barrier. Can we harness the beneficial effects of SLC13A5 deficiency without the detrimental effects? In theory, this should be feasible with selective inhibitors of NaCT, which work only in the liver and do not get across the blood-brain barrier.


Asunto(s)
Simportadores/deficiencia , Animales , Barrera Hematoencefálica , Huesos/metabolismo , Ácido Cítrico/metabolismo , Ciclo del Ácido Cítrico/genética , Esmalte Dental/metabolismo , Diabetes Mellitus/metabolismo , Transportadores de Ácidos Dicarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Dicarboxílicos/deficiencia , Transportadores de Ácidos Dicarboxílicos/fisiología , Modelos Animales de Enfermedad , Proteínas de Drosophila/fisiología , Hígado Graso/metabolismo , Femenino , Células Germinativas/metabolismo , Hepatocitos/metabolismo , Humanos , Recién Nacido , Transporte Iónico , Longevidad/genética , Masculino , Ratones , Ratones Noqueados , Mutación , Neoplasias/metabolismo , Neuronas/metabolismo , Conformación Proteica , Espasmos Infantiles/genética , Especificidad de la Especie , Simportadores/antagonistas & inhibidores , Simportadores/genética , Simportadores/fisiología
11.
Biochem J ; 477(21): 4149-4165, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33079129

RESUMEN

The Na+-coupled citrate transporter (NaCT/SLC13A5/mINDY) in the liver delivers citrate from the blood into hepatocytes. As citrate is a key metabolite and regulator of multiple biochemical pathways, deletion of Slc13a5 in mice protects against diet-induced obesity, diabetes, and metabolic syndrome. Silencing the transporter suppresses hepatocellular carcinoma. Therefore, selective blockers of NaCT hold the potential to treat various diseases. Here we report on the characteristics of one such inhibitor, BI01383298. It is known that BI01383298 is a high-affinity inhibitor selective for human NaCT with no effect on mouse NaCT. Here we show that this compound is an irreversible and non-competitive inhibitor of human NaCT, thus describing the first irreversible inhibitor for this transporter. The mouse NaCT is not affected by this compound. The inhibition of human NaCT by BI01383298 is evident for the constitutively expressed transporter in HepG2 cells and for the ectopically expressed human NaCT in HEK293 cells. The IC50 is ∼100 nM, representing the highest potency among the NaCT inhibitors known to date. Exposure of HepG2 cells to this inhibitor results in decreased cell proliferation. We performed molecular modeling of the 3D-structures of human and mouse NaCTs using the crystal structure of a humanized variant of VcINDY as the template, and docking studies to identify the amino acid residues involved in the binding of citrate and BI01383298. These studies provide insight into the probable bases for the differential effects of the inhibitor on human NaCT versus mouse NaCT as well as for the marked species-specific difference in citrate affinity.


Asunto(s)
Inhibidores Enzimáticos/farmacocinética , Simportadores/antagonistas & inhibidores , Simportadores/metabolismo , Animales , Ácido Cítrico/metabolismo , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Ratones , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Especificidad de la Especie , Simportadores/química
12.
Biochem J ; 477(19): 3867-3883, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32955078

RESUMEN

Hereditary hemochromatosis (HH), an iron-overload disease, is a prevalent genetic disorder. As excess iron causes a multitude of metabolic disturbances, we postulated that iron overload in HH disrupts colonic homeostasis and colon-microbiome interaction and exacerbates the development and progression of colonic inflammation and colon cancer. To test this hypothesis, we examined the progression and severity of colitis and colon cancer in a mouse model of HH (Hfe-/-), and evaluated the potential contributing factors. We found that experimentally induced colitis and colon cancer progressed more robustly in Hfe-/- mice than in wild-type mice. The underlying causes were multifactorial. Hfe-/- colons were leakier with lower proliferation capacity of crypt cells, which impaired wound healing and amplified inflammation-driven tissue injury. The host/microflora axis was also disrupted. Sequencing of fecal 16S RNA revealed profound changes in the colonic microbiome in Hfe-/- mice in favor of the pathogenic bacteria belonging to phyla Proteobacteria and TM7. There was an increased number of bacteria adhered onto the mucosal surface of the colonic epithelium in Hfe-/- mice than in wild-type mice. Furthermore, the expression of innate antimicrobial peptides, the first-line of defense against bacteria, was lower in Hfe-/- mouse colon than in wild-type mouse colon; the release of pro-inflammatory cytokines upon inflammatory stimuli was also greater in Hfe-/- mouse colon than in wild-type mouse colon. These data provide evidence that excess iron accumulation in colonic tissue as happens in HH promotes colitis and colon cancer, accompanied with bacterial dysbiosis and loss of function of the intestinal/colonic barrier.


Asunto(s)
Colitis , Neoplasias del Colon , Disbiosis , Microbioma Gastrointestinal , Hemocromatosis , Proteobacteria/crecimiento & desarrollo , Animales , Colitis/genética , Colitis/metabolismo , Colitis/microbiología , Colitis/patología , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/microbiología , Neoplasias del Colon/patología , Disbiosis/genética , Disbiosis/metabolismo , Disbiosis/microbiología , Disbiosis/patología , Hemocromatosis/genética , Hemocromatosis/metabolismo , Hemocromatosis/microbiología , Hemocromatosis/patología , Proteína de la Hemocromatosis/deficiencia , Proteína de la Hemocromatosis/metabolismo , Ratones , Ratones Noqueados , Proteobacteria/clasificación
13.
Asian J Pharm Sci ; 15(2): 237-251, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32373202

RESUMEN

Based on the evidence that hemochromatosis, an iron-overload disease, drives hepatocellular carcinoma, we hypothesized that chronic exposure to excess iron, either due to genetic or environmental causes, predisposes an individual to cancer. Using pancreatic cancer as our primary focus, we employed cell culture studies to interrogate the connection between excess iron and cancer, and combined in vitro and in vivo studies to explore the connection further. Ferric ammonium citrate was used as an exogenous iron source. Chronic exposure to excess iron induced epithelial-mesenchymal transition (EMT) in normal and cancer cell lines, loss of p53, and suppression of p53 transcriptional activity evidenced from decreased expression of p53 target genes (p21, cyclin D1, Bax, SLC7A11). To further extrapolate our cell culture data, we generated EL-KrasG12D (EL-Kras) mouse (pancreatic neoplastic mouse model) expressing Hfe+/+ and Hfe-/- genetic background. p53 target gene expression decreased in EL-Kras/Hfe-/- mouse pancreas compared to EL-Kras/Hfe+/+ mouse pancreas. Interestingly, the incidence of acinar-to-ductal metaplasia and cystic pancreatic neoplasms (CPN) decreased in EL-Kras/Hfe-/- mice, but the CPNs that did develop were larger in these mice than in EL-Kras/Hfe+/+ mice. In conclusion, these in vitro and in vivo studies support a potential role for chronic exposure to excess iron as a promoter of more aggressive disease via p53 loss and SLC7A11 upregulation within pancreatic epithelial cells.

14.
Biochem J ; 477(8): 1499-1513, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32239172

RESUMEN

Hereditary hemochromatosis (HH) is mostly caused by mutations in the iron-regulatory gene HFE. The disease is associated with iron overload, resulting in liver cirrhosis/cancer, cardiomegaly, kidney dysfunction, diabetes, and arthritis. Fe2+-induced oxidative damage is suspected in the etiology of these symptoms. Here we examined, using Hfe-/- mice, whether disruption of uric acid (UA) homeostasis plays any role in HH-associated arthritis. We detected elevated levels of UA in serum and intestine in Hfe-/- mice compared with controls. Though the expression of xanthine oxidase, which generates UA, was not different in liver and intestine between wild type and Hfe-/- mice, the enzymatic activity was higher in Hfe-/- mice. We then examined various transporters involved in UA absorption/excretion. Glut9 expression did not change; however, there was an increase in Mrp4 and a decrease in Abcg2 in Hfe-/- mice. As ABCG2 mediates intestinal excretion of UA and mutations in ABCG2 cause hyperuricemia, we examined the potential connection between iron and ABCG2. We found p53-responsive elements in hABCG2 promoter and confirmed with chromatin immunoprecipitation that p53 binds to this promoter. p53 protein was reduced in Hfe-/- mouse intestine. p53 is a heme-binding protein and p53-heme complex is subjected to proteasomal degradation. We conclude that iron/heme overload in HH increases xanthine oxidase activity and also promotes p53 degradation resulting in decreased ABCG2 expression. As a result, systemic UA production is increased and intestinal excretion of UA via ABCG2 is decreased, causing serum and tissue accumulation of UA, a potential factor in the etiology of HH-associated arthritis.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Hemocromatosis/metabolismo , Hiperuricemia/enzimología , Ácido Úrico/metabolismo , Xantina Oxidasa/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Animales , Femenino , Hemocromatosis/complicaciones , Hemocromatosis/congénito , Hemocromatosis/enzimología , Proteína de la Hemocromatosis/genética , Proteína de la Hemocromatosis/metabolismo , Homeostasis , Humanos , Hiperuricemia/etiología , Hiperuricemia/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Xantina Oxidasa/genética
15.
Biochem J ; 477(8): 1409-1425, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32219372

RESUMEN

SLC6A14 is a Na+/Cl--coupled transporter for neutral and cationic amino acids. It is expressed at basal levels in the normal colon but is up-regulated in colon cancer. However, the relevance of this up-regulation to cancer progression and the mechanisms involved in the up-regulation remain unknown. Here, we show that SLC6A14 is essential for colon cancer and that its up-regulation involves, at least partly, Wnt signaling. The up-regulation of the transporter is evident in most human colon cancer cell lines and also in a majority of patient-derived xenografts. These findings are supported by publicly available TCGA (The Cancer Genome Atlas) database. Treatment of colon cancer cells with α-methyltryptophan (α-MT), a blocker of SLC6A14, induces amino acid deprivation, decreases mTOR activity, increases autophagy, promotes apoptosis, and suppresses cell proliferation and invasion. In xenograft and syngeneic mouse tumor models, silencing of SLC6A14 by shRNA or blocking its function by α-MT reduces tumor growth. Similarly, the deletion of Slc6a14 in mice protects against colon cancer in two different experimental models (inflammation-associated colon cancer and genetically driven colon cancer). In colon cancer cells, expression of the transporter is reduced by Wnt antagonist or by silencing of ß-catenin whereas Wnt agonist or overexpression of ß-catenin shows the opposite effect. Finally, SLC6A14 as a target for ß-catenin is confirmed by chromatin immunoprecipitation. These studies demonstrate that SLC6A14 plays a critical role in the promotion of colon cancer and that its up-regulation in cancer involves Wnt signaling. These findings identify SLC6A14 as a promising drug target for the treatment of colon cancer.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Carcinógenos/metabolismo , Colon/metabolismo , Neoplasias del Colon/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Animales , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colon/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/fisiopatología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Triptófano/administración & dosificación , Triptófano/análogos & derivados , Vía de Señalización Wnt
16.
Oncogene ; 39(16): 3292-3304, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32071396

RESUMEN

GPR81 is a G-protein-coupled receptor for lactate, which is upregulated in breast cancer and plays an autocrine role to promote tumor growth by tumor cell-derived lactate. Here we asked whether lactate has any paracrine role via activation of GPR81 in cells present in tumor microenvironment to help tumor growth. First, we showed that deletion of Gpr81 suppresses breast cancer growth in a constitutive breast cancer mouse model (MMTV-PyMT-Tg). We then used a syngeneic transplant model by monitoring tumor growth from a mouse breast cancer cell line (AT-3, Gpr81-negative) implanted in mammary fat pad of wild-type mice and Gpr81-null mice. Tumor growth was suppressed in Gpr81-null mice compared with wild-type mice. There were more tumor-infiltrating T cells and MHCIIhi-immune cells in tumors from Gpr81-null mice compared with tumors from wild-type mice. RNA-seq analysis of tumors indicated involvement of immune cells and antigen presentation in Gpr81-dependent tumor growth. Antigen-presenting dendritic cells expressed Gpr81 and activation of this receptor by lactate suppressed cell-surface presentation of MHCII. Activation of Gpr81 in dendritic cells was associated with decreased cAMP, IL-6 and IL-12. These findings suggest that tumor cell-derived lactate activates GPR81 in dendritic cells and prevents presentation of tumor-specific antigens to other immune cells. This paracrine mechanism is complementary to the recently discovered autocrine mechanism in which lactate induces PD-L1 in tumor cells via activation of GPR81 in tumor cells, thus providing an effective means for tumor cells to evade immune system. As such, blockade of GPR81 signaling could boost cancer immunotherapy.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Neoplasias de la Mama/genética , Linfocitos Infiltrantes de Tumor/inmunología , Receptores Acoplados a Proteínas G/genética , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Proliferación Celular/genética , AMP Cíclico/genética , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Interleucina-12/genética , Interleucina-6/genética , Ácido Láctico/metabolismo , Comunicación Paracrina/genética , Comunicación Paracrina/inmunología , Microambiente Tumoral/inmunología
17.
Drug Deliv ; 24(1): 1338-1349, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28911246

RESUMEN

l-Carnitine, obligatory for oxidation of fatty acids, is transported into cells by the Na+-coupled transporter OCTN2 and the Na+/Cl--coupled transporter ATB0,+. Here we investigated the potential of L-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) to deliver chemotherapeutic drugs into cancer cells by targeting the nanoparticles to both OCTN2 and ATB0,+. The cellular uptake of LC-PLGA NPs in the breast cancer cell line MCF7 and the colon cancer cell line Caco-2 was increased compared to unmodified nanoparticles, but decreased in the absence of co-transporting ions (Na+ and/or Cl-) or in the presence of competitive substrates for the two transporters. Studies with fluorescently labeled nanoparticles showed their colocalization with both OCTN2 and ATB0,+, confirming the involvement of both transporters in the cellular uptake of LC-PLGA NPs. As the expression levels of OCTN2 and ATB0,+ are higher in colon cancer cells than in normal colon cells, LC-PLGA NPs can be used to deliver chemotherapeutic drugs selectively into cancer cells for colon cancer therapy. With 5-fluorouracil-loaded LC-PLGA NPs, we were able to demonstrate significant increases in the uptake efficiency and cytotoxicity in colon cancer cells that were positive for OCTN2 and ATB0,+. In a 3D spheroid model of tumor growth, LC-PLGA NPs showed increased uptake and enhanced antitumor efficacy. These findings indicate that dual-targeting LC-PLGA NPs to OCTN2 and ATB0,+ has great potential to deliver chemotherapeutic drugs for colon cancer therapy. Dual targeting LC-PLGA NPs to OCTN2 and ATB0,+ can selectively deliver chemotherapeutics to colon cancer cells where both transporters are overexpressed, preventing targeting to normal cells and thus avoiding off-target side effects.


Asunto(s)
Nanopartículas , Sistema de Transporte de Aminoácidos ASC , Células CACO-2 , Carnitina , Neoplasias del Colon , Humanos , Ácido Láctico , Antígenos de Histocompatibilidad Menor , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Miembro 5 de la Familia 22 de Transportadores de Solutos
18.
Nutrients ; 9(8)2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28796169

RESUMEN

The symbiotic co-habitation of bacteria in the host colon is mutually beneficial to both partners. While the host provides the place and food for the bacteria to colonize and live, the bacteria in turn help the host in energy and nutritional homeostasis, development and maturation of the mucosal immune system, and protection against inflammation and carcinogenesis. In this review, we highlight the molecular mediators of the effective communication between the bacteria and the host, focusing on selective metabolites from the bacteria that serve as messengers to the host by acting through selective receptors in the host colon. These bacterial metabolites include the short-chain fatty acids acetate, propionate, and butyrate, the tryptophan degradation products indole-3-aldehyde, indole-3-acetic, acid and indole-3-propionic acid, and derivatives of endogenous bile acids. The targets for these bacterial products in the host include the cell-surface G-protein-coupled receptors GPR41, GPR43, and GPR109A and the nuclear receptors aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), and farnesoid X receptor (FXR). The chemical communication between these bacterial metabolite messengers and the host targets collectively has the ability to impact metabolism, gene expression, and epigenetics in colonic epithelial cells as well as in mucosal immune cells. The end result, for the most part, is the maintenance of optimal colonic health.


Asunto(s)
Bacterias/metabolismo , Colon/microbiología , Colon/fisiología , Receptores de Superficie Celular/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Humanos
19.
Compr Physiol ; 8(1): 299-314, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29357130

RESUMEN

Short-chain fatty acids (SCFA; acetate, propionate, and butyrate) are generated in colon by bacterial fermentation of dietary fiber. Though diffusion in protonated form is a significant route, carrier-mediated mechanisms constitute the major route for the entry of SCFA in their anionic form into colonic epithelium. Several transport systems operate in cellular uptake of SCFA. MCT1 (SLC16A1) and MCT4 (SLC16A3) are H+-coupled and mediate electroneutral transport of SCFA (H+: SCFA stoichiometry; 1:1). MCT1 is expressed both in the apical membrane and basolateral membrane of colonic epithelium whereas MCT4 specifically in the basolateral membrane. SMCT1 (SLC5A8) and SMCT2 (SLC5A12) are Na+-coupled; SMCT1-mediated transport is electrogenic (Na+: SCFA stoichiometry; 2:1) whereas SMCT2-mediated transport is electroneutral (Na+: SCFA stoichiometry; 1:1). SMCT1 and SMCT2 are expressed exclusively in the apical membrane. An anion-exchange mechanism also operates in the apical membrane in which SCFA entry in anionic form is coupled to bicarbonate efflux; the molecular identity of this exchanger however remains unknown. All these transporters are subject to regulation, notably by their substrates themselves; this process involves cell-surface receptors with SCFA as signaling molecules. There are significant alterations in the expression of these transporters in ulcerative colitis and colon cancer. The tumor-associated changes occur via transcriptional regulation by p53 and HIF1α and by promoter methylation. As SCFA are obligatory for optimal colonic health, the transporters responsible for the entry and transcellular transfer of these bacterial products in colonic epithelium are critical determinants of colonic function under physiological conditions and in disease states. © 2018 American Physiological Society. Compr Physiol 8:299-314, 2018.


Asunto(s)
Proteínas de Transporte de Anión/fisiología , Colon/metabolismo , Ácidos Grasos Volátiles/fisiología , Homeostasis/fisiología , Transporte Biológico/fisiología , Enfermedades del Colon/metabolismo , Humanos , Transportadores de Ácidos Monocarboxílicos/fisiología , Transportador de Folato Acoplado a Protón/fisiología , Simportadores/fisiología
20.
Curr Colorectal Cancer Rep ; 13(2): 111-118, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30337849

RESUMEN

PURPOSE OF REVIEW: The relationship between colonic bacteria and the host is symbiotic, but how communication between the two partners occurs is just beginning to be understood at the molecular level. Here, we highlight specific products of bacterial metabolism that are present in the colonic lumen and their molecular targets in the host that facilitate this communication. RECENT FINDINGS: Colonic epithelial cells and mucosal immune cells express several cell-surface receptors and nuclear receptors that are activated by specific bacterial metabolites, which impact multiple signaling pathways and expression of many genes. In addition, some bacterial metabolites also possess the ability to cause epigenetic changes in these cells via inhibition of selective enzymes involved in the maintenance of histone acetylation and DNA methylation patterns. SUMMARY: Colonic bacteria communicate with their host with selective metabolites that interact with host molecular targets. This chemical communication underlies a broad range of the biology and function of colonic epithelial cells and mucosal immune cells, which protect against inflammation and carcinogenesis in the colon under normal physiological conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA