Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Redox Biol ; 73: 103201, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38795545

RESUMEN

Reactive oxygen species (ROS), play important roles in cellular signaling, nonetheless are toxic at higher concentrations. Cells have many interconnected, overlapped or backup systems to neutralize ROS, but their regulatory mechanisms remain poorly understood. Here, we reveal an essential role for mitochondrial AMPylase Fmp40 from budding yeast in regulating the redox states of the mitochondrial 1-Cys peroxiredoxin Prx1, which is the only protein shown to neutralize H2O2 with the oxidation of the mitochondrial glutathione and the thioredoxin Trx3, directly involved in the reduction of Prx1. Deletion of FMP40 impacts a cellular response to H2O2 treatment that leads to programmed cell death (PCD) induction and an adaptive response involving up or down regulation of genes encoding, among others the catalase Cta1, PCD inducing factor Aif1, and mitochondrial redoxins Trx3 and Grx2. This ultimately perturbs the reduced glutathione and NADPH cellular pools. We further demonstrated that Fmp40 AMPylates Prx1, Trx3, and Grx2 in vitro and interacts with Trx3 in vivo. AMPylation of the threonine residue 66 in Trx3 is essential for this protein's proper endogenous level and its precursor forms' maturation under oxidative stress conditions. Additionally, we showed the Grx2 involvement in the reduction of Trx3 in vivo. Taken together, Fmp40, through control of the reduction of mitochondrial redoxins, regulates the hydrogen peroxide, GSH and NADPH signaling influencing the yeast cell survival.


Asunto(s)
Peróxido de Hidrógeno , Oxidación-Reducción , Estrés Oxidativo , Peroxirredoxinas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Tiorredoxinas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Glutatión/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular , Apoptosis , Peroxidasas , Glutarredoxinas
2.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119621, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37907194

RESUMEN

The replication of DNA requires specialized and intricate machinery. This machinery is known as a replisome and is highly evolutionarily conserved, from simple unicellular organisms such as yeast to human cells. The replisome comprises multiple protein complexes responsible for various steps in the replication process. One crucial component of the replisome is the Cdc45-MCM-GINS (CMG) helicase complex, which unwinds double-stranded DNA and coordinates the assembly and function of other replisome components, including DNA polymerases. The genes encoding the CMG helicase components are essential for initiating DNA replication. In this study, we aimed to investigate how the absence of one copy of the CMG complex genes in heterozygous Saccharomyces cerevisiae cells impacts the cells' physiology and aging. Our data revealed that these cells exhibited a significant reduction in transcript levels for the respective CMG helicase complex proteins, as well as disruptions in the cell cycle, extended doubling times, and alterations in their biochemical profile. Notably, this study provided the first demonstration that cells heterozygous for genes encoding subunits of the CMG helicase exhibited a significantly increased reproductive potential and delayed chronological aging. Additionally, we observed a noteworthy correlation between RNA and polysaccharide levels in yeast and their reproductive potential, as well as a correlation between fatty acid levels and cell doubling times. Our findings also shed new light on the potential utility of yeast in investigating potential therapeutic targets for cancer treatment.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Humanos , Saccharomyces cerevisiae/metabolismo , Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , ADN
3.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119526, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37364618

RESUMEN

The DNA double-strand breaks are particularly deleterious, especially when an error-free repair pathway is unavailable, enforcing the error-prone recombination pathways to repair the lesion. Cells can resume the cell cycle but at the expense of decreased viability due to genome rearrangements. One of the major players involved in recombinational repair of DNA damage is Rad51 recombinase, a protein responsible for presynaptic complex formation. We previously showed that an increased level of this protein promotes the usage of illegitimate recombination. Here we show that the level of Rad51 is regulated via the ubiquitin-dependent proteolytic pathway. The ubiquitination of Rad51 depends on multiple E3 enzymes, including SUMO-targeted ubiquitin ligases. We also demonstrate that Rad51 can be modified by both ubiquitin and SUMO. Moreover, its modification with ubiquitin may lead to opposite effects: degradation dependent on Rad6, Rad18, Slx8, Dia2, and the anaphase-promoting complex, or stabilization dependent on Rsp5. We also show that post-translational modifications with SUMO and ubiquitin affect Rad51's ability to form and disassemble DNA repair foci, respectively, influencing cell cycle progression and cell viability in genotoxic stress conditions. Our data suggest the existence of a complex E3 ligases network that regulates Rad51 recombinase's turnover, its molecular activity, and access to DNA, limiting it to the proportions optimal for the actual cell cycle stage and growth conditions, e.g., stress. Dysregulation of this network would result in a drop in cell viability due to uncontrolled genome rearrangement in the yeast cells. In mammals would promote the development of genetic diseases and cancer.


Asunto(s)
Proteínas F-Box , Proteínas de Saccharomyces cerevisiae , Animales , ADN , Reparación del ADN/genética , Proteínas F-Box/genética , Mamíferos/genética , Mamíferos/metabolismo , Procesamiento Proteico-Postraduccional/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
4.
BMC Ecol Evol ; 21(1): 99, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039270

RESUMEN

BACKGROUND: The impact of genetic interaction networks on evolution is a fundamental issue. Previous studies have demonstrated that the topology of the network is determined by the properties of the cellular machinery. Functionally related genes frequently interact with one another, and they establish modules, e.g., modules of protein complexes and biochemical pathways. In this study, we experimentally tested the hypothesis that compensatory evolutionary modifications, such as mutations and transcriptional changes, occur frequently in genes from perturbed modules of interacting genes. RESULTS: Using Saccharomyces cerevisiae haploid deletion mutants as a model, we investigated two modules lacking COG7 or NUP133, which are evolutionarily conserved genes with many interactions. We performed laboratory evolution experiments with these strains in two genetic backgrounds (with or without additional deletion of MSH2), subjecting them to continuous culture in a non-limiting minimal medium. Next, the evolved yeast populations were characterized through whole-genome sequencing and transcriptome analyses. No obvious compensatory changes resulting from inactivation of genes already included in modules were identified. The supposedly compensatory inactivation of genes in the evolved strains was only rarely observed to be in accordance with the established fitness effect of the genetic interaction network. In fact, a substantial majority of the gene inactivations were predicted to be neutral in the experimental conditions used to determine the interaction network. Similarly, transcriptome changes during continuous culture mostly signified adaptation to growth conditions rather than compensation of the absence of the COG7, NUP133 or MSH2 genes. However, we noticed that for genes whose inactivation was deleterious an upregulation of transcription was more common than downregulation. CONCLUSIONS: Our findings demonstrate that the genetic interactions and the modular structure of the network described by others have very limited effects on the evolutionary trajectory following gene deletion of module elements in our experimental conditions and has no significant impact on short-term compensatory evolution. However, we observed likely compensatory evolution in functionally related (albeit non-interacting) genes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Epistasis Genética , Eliminación de Gen , Redes Reguladoras de Genes , Mutación , Proteínas de Complejo Poro Nuclear , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Front Cell Dev Biol ; 8: 198, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32292783

RESUMEN

The specificity of import of peroxisomal matrix proteins is dependent on the targeting signals encoded within their amino acid sequences. Two known import signals, peroxisomal targeting signal 1 (PTS1), positioned at the C-termini and PTS2 located close to N-termini of these proteins are recognized by the Pex5p and Pex7p receptors, respectively. However, in several yeast species, including Saccharomyces cerevisiae, proteins exist that are efficiently imported into peroxisomes despite having neither PTS1 nor PTS2 and for which no other import signal has been determined. An example of such a protein is S. cerevisiae acyl-CoA oxidase (AOx) encoded by the POX1 gene. While it is known that its import is driven by its interaction with the N-terminal segment of Pex5p, which is separate from its C-terminal PTS1-recognizing tetratricopeptide domain, to date, no AOx polypeptide region has been implicated as critical for this interaction, and thus would constitute the long-sought PTS3 signal. Using random mutagenesis combined with a two-hybrid screen, we identified single amino acid residues within the AOx polypeptide that are crucial for this interaction and for the peroxisomal import of this protein. Interestingly, while scattered throughout the primary sequence, these amino acids come close to each other within two domains of the folded AOx. Although the role of one or both of these regions as the PTS3 signal is not finally proven, our data indicate that the signal guiding AOx into peroxisomal matrix is not a linear sequence but a signal patch.

6.
Oxid Med Cell Longev ; 2018: 1898421, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29743970

RESUMEN

The total lifespan of the yeast Saccharomyces cerevisiae may be divided into two phases: the reproductive phase, during which the cell undergoes mitosis cycles to produce successive buds, and the postreproductive phase, which extends from the last division to cell death. These phases may be regulated by a common mechanism or by distinct ones. In this paper, we proposed a more comprehensive approach to reveal the mechanisms that regulate both reproductive potential and total lifespan in cell size context. Our study was based on yeast cells, whose size was determined by increased genome copy number, ranging from haploid to tetraploid. Such experiments enabled us to test the hypertrophy hypothesis, which postulates that excessive size achieved by the cell-the hypertrophy state-is the reason preventing the cell from further proliferation. This hypothesis defines the reproductive potential value as the difference between the maximal size that a cell can reach and the threshold value, which allows a cell to undergo its first cell cycle and the rate of the cell size to increase per generation. Here, we showed that cell size has an important impact on not only the reproductive potential but also the total lifespan of this cell. Moreover, the maximal cell size value, which limits its reproduction capacity, can be regulated by different factors and differs depending on the strain ploidy. The achievement of excessive size by the cell (hypertrophic state) may lead to two distinct phenomena: the cessation of reproduction without "mother" cell death and the cessation of reproduction with cell death by bursting, which has not been shown before.


Asunto(s)
Tamaño de la Célula , Supervivencia Celular/genética , Modelos Biológicos , Reproducción/fisiología , Saccharomyces cerevisiae/fisiología , Muerte Celular , Variaciones en el Número de Copia de ADN/genética , Hipertrofia , Mitosis/genética , Poliploidía , Saccharomyces cerevisiae/citología
7.
Free Radic Biol Med ; 42(9): 1409-20, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17395014

RESUMEN

The Saccharomyces cerevisiae HSP31 (YDR533c) gene encodes a protein that belongs to the DJ-1/PfpI family and its function is unknown. Homologs to Hsp31p polypeptide can be found in organisms from all systematic groups of eukaryotes and prokaryotes, and the functions of the vast majority of them are also hypothetical. One of the homologs is human protein DJ-1. Various amino acid substitutions within this protein correlate with early onset hereditary Parkinson's disease. The deletion of the HSP31 gene displays no apparent phenotype under standard growth conditions, but a thorough functional analysis of S. cerevisiae revealed that its absence makes the cells sensitive to a subset of reactive oxygen species (ROS) generators. HSP31 is induced under conditions of oxidative stress in a YAP1-dependent manner. Similar to other stress response genes, it is also induced in the postdiauxic phase of growth and this induction is YAP1-independent. The patterns of sensitivities to various ROS generators of the hsp31Delta strain and the strain with the deletion of SOD1, another gene defending the cell against ROS, are different. We postulate that Hsp31p protects the cell against oxidative stress and complements other stress protection systems within the cell.


Asunto(s)
Proteínas de Choque Térmico/fisiología , Chaperonas Moleculares/fisiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Supervivencia Celular , Cartilla de ADN , Genotipo , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Plásmidos , Reacción en Cadena de la Polimerasa , Mapeo Restrictivo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
8.
J Mol Biol ; 366(4): 1074-86, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17198712

RESUMEN

Saccharomyces cerevisiae Rad30 is the homolog of human DNA polymerase eta whose inactivation leads to the cancer-prone syndrome xeroderma pigmentosum variant. Both human and yeast polymerase eta are responsible for error-free bypass of UV-induced cis-syn pyrimidine dimers and several other DNA lesions. Here we show, using yeast strains expressing TAP-tagged Rad30, that the level of this protein is post-translationally regulated via ubiquitination and proteasome-mediated degradation. The half-life of Rad30 is 20 min and it increases due to proteasomal defects. Mutations inactivating components of the Skp1/cullin/ F-box (SCF) ubiquitin ligase complex: Skp1 and the F-box protein Ufo1 stabilize Rad30. Our results indicate also that ultraviolet irradiation causes transient stabilization of Rad30, which leads, in turn, to temporary accumulation of this polymerase in the cell. We conclude that proteolysis plays an important role in regulating the cellular abundance of Rad30. These results are the first indication of a role for controlled proteasomal degradation in modulating cellular level of translesion DNA polymerase in eukaryotes.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Rayos Ultravioleta , Estabilidad de Enzimas , Regulación Enzimológica de la Expresión Génica , Complejo de la Endopetidasa Proteasomal/fisiología , Complejo de la Endopetidasa Proteasomal/efectos de la radiación , Saccharomyces cerevisiae/efectos de la radiación
9.
Mutat Res ; 593(1-2): 153-63, 2006 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-16095633

RESUMEN

Besides its role as a major recycler of unfolded or otherwise damaged intracellular proteins, the 26S proteasome functions as a regulator of many vital cellular processes and is postulated as a target for antitumor drugs. It has previously been shown that dysfunction of the catalytic core of the 26S proteasome, the 20S proteasome, causes a moderate increase in the frequency of spontaneous mutations in yeast [A. Podlaska, J. McIntyre, A. Skoneczna, E. Sledziewska-Gojska, The link between proteasome activity and postreplication DNA repair in Saccharomyces cerevisiae. Mol. Microbiol. 49 (2003) 1321-1332]. Here we show the results of genetic analysis, which indicate that the mutator phenotype caused by the deletion of UMP1, encoding maturase of 20S proteasome, involves members of the RAD6 epistasis group. The great majority of mutations occurring spontaneously in yeast cells deficient in 20S proteasome function are connected with the unique Rad6/Rad18-dependent error-prone translesion DNA synthesis (TLS) requiring the activities of both TLS polymerases: Pol eta and Pol zeta. Our results suggest the involvement of proteasomal activity in the limitation of this unique error-prone TLS mechanism in wild-type cells. On the other hand, we found that the mutator phenotypes caused by deficiency in Rad18 and Rad6, are largely alleviated by defects in proteasome activities. Since the mutator phenotypes produced by deletion of RAD6 and RAD18 require Pol zeta and Siz1/Ubc9-dependent sumoylation of PCNA, our results suggest that proteasomal dysfunction limits sumoylation-dependent error-prone activity of Pol zeta. Taken together, our findings strongly support the idea that proteolytic activity is involved in modulating the balance between TLS mechanisms functioning during DNA replication in S. cerevisiae.


Asunto(s)
Mutación , Complejo de la Endopetidasa Proteasomal/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Línea Celular , Daño del ADN , Cartilla de ADN , Fenotipo
10.
Mol Microbiol ; 49(5): 1321-32, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12940990

RESUMEN

We have shown previously that deletion of the Saccharomyces cerevisiae UMP1 gene encoding the 20S proteasome maturase causes sensitivity to UV radiation. In the current report, we have extended this finding to show that mutations specifically compromising chymotrypsin-like or trypsin-like activity of 20S proteasome peptidases also result in increased UV sensitivity. We have also established that mutations affecting proteasome activity, namely ump1Delta, pre2-K108R and pup1-T20A, result in spontaneous and UV-induced mutator phenotypes. To elucidate the origin of these DNA repair phenotypes of the proteasomal mutants, we performed epistasis analysis, with respect to UV sensitivity, using yeast strains with the UMP1 deletion in different DNA repair backgrounds. We show that UMP1 is not epistatic to RAD23 and RAD2, which are involved in the nucleotide excision repair (NER) pathway. Instead, our results indicate that UMP1 as well as PUP1 and PRE2 (encoding catalytic subunits of 20S proteasome) belong to an epistatic group of genes functioning in post-replication DNA repair (PRR) and are hypostatic to RAD18, which, in complex with RAD6, plays a central role in PRR. We also show that UMP1 is epistatic to REV3 and RAD30, although the relationship of UMP1 with these genes is different.


Asunto(s)
Cisteína Endopeptidasas/fisiología , Reparación del ADN , Replicación del ADN , Complejos Multienzimáticos/fisiología , Saccharomyces cerevisiae/genética , Canavanina/farmacología , Cromosomas Fúngicos/metabolismo , Recuento de Colonia Microbiana , Cisteína Endopeptidasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/fisiología , Epistasis Genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Eliminación de Gen , Genes Fúngicos , Chaperonas Moleculares/genética , Complejos Multienzimáticos/genética , Mutación , Complejo de la Endopetidasa Proteasomal , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Enzimas Ubiquitina-Conjugadoras/fisiología , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA