Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Pharmacol Res ; : 107457, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389401

RESUMEN

Flavonoids, a diverse group of plant-derived secondary metabolites, have garnered significant attention for their potential anti-cancer properties. This review explores the role of flavonoids as inhibitors of DNA topoisomerases, key enzymes essential for DNA replication, transcription, and cell division. The article offers a comprehensive overview of flavonoid classification, biosynthesis, and their widespread natural occurrence. It further delves into the molecular mechanisms through which flavonoids exert their anti-cancer effects, emphasizing their interactions with topoisomerases. The review provides a thorough analysis of both in vitro and in vivo studies that highlight the topoisomerase inhibitory activities of various flavonoids and their derivatives. Key findings demonstrate that flavonoids can function as catalytic inhibitors, poisons, or DNA intercalators, affecting both type I and type II topoisomerases. The structure-activity relationships of flavonoids concerning their topoisomerase inhibitory potency are also examined. This review underscores the potential of flavonoids as promising lead compounds for the development of novel topoisomerase inhibitors, which could have important implications for cancer therapy. However, it also acknowledges the need for further research to fully understand the intricate interactions between flavonoids and topoisomerases within the cellular environment.

2.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273083

RESUMEN

DNA repair proteins became the popular targets in research on cancer treatment. In our studies we hypothesized that inhibition of DNA polymerase theta (Polθ) and its combination with Poly (ADP-ribose) polymerase 1 (PARP1) or RAD52 inhibition and the alkylating drug temozolomide (TMZ) has an anticancer effect on glioblastoma cells (GBM21), whereas it has a low impact on normal human astrocytes (NHA). The effect of the compounds was assessed by analysis of cell viability, apoptosis, proliferation, DNA damage and cell cycle distribution, as well as gene expression. The main results show that Polθ inhibition causes a significant decrease in glioblastoma cell viability. It induces apoptosis, which is accompanied by a reduction in cell proliferation and DNA damage. Moreover, the effect was stronger when dual inhibition of Polθ with PARP1 or RAD52 was applied, and it is further enhanced by addition of TMZ. The impact on normal cells is much lower, especially when considering cell viability and DNA damage. In conclusion, we would like to highlight that Polθ inhibition used in combination with PARP1 or RAD52 inhibition has great potential to kill glioblastoma cells, and shows a synthetic lethal effect, while sparing normal astrocytes.


Asunto(s)
Supervivencia Celular , Glioblastoma , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteína Recombinante y Reparadora de ADN Rad52 , Temozolomida , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Línea Celular Tumoral , Temozolomida/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , ADN Polimerasa theta , Apoptosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Mutaciones Letales Sintéticas/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo
3.
Biomed Pharmacother ; 174: 116516, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583339

RESUMEN

The Plectranthus genus is often cited for its medicinal properties. Plectranthus ornatus Codd. is traditionally used in Africa for the treatment of gastric and liver diseases and their leaves are used for their antibiotic action. The main constituent of P. ornatus is the halimane compound, 11 R∗-acetoxyhalima-5,13E-dien-15-oic acid (Hal), described for its antimicrobial and anticancer properties. The objective of this work was to improve the activity of the halimane lead molecule. Further physiochemical characterisation was performed on Hal. To the best of our knowledge, this work constitutes the first published data of the absolute configurations by SCXRD and thermal stability of Hal. Using Hal, reactions with different amines were carried out to afford novel semi-synthetic derivatives and their structural elucidation was completed. The cytotoxicity of the derivatives was assessed against three leukaemia cancer cell lines (CCRF-CEM, K562 and HL-60). The antioxidant activity was investigated using H2O2-induced HGF-1 cells and their anti-inflammatory activity was studied using RT-PCR and ELISA. Our data showed that amide derivatives of Hal presented moderate cytotoxicity and more potent activity when compared to the parent molecule, giving insight into the SAR of Hal. The derivatives also displayed protection against oxidative damage to DNA. Finally, the derivatives possessed anti-inflammatory properties at the level of gene and protein expression for the cytokines IL-1ß, TNF-α and IL-6, induced by LPS in normal HGF-1 cells. Overall, our study provides useful insight into the enhanced biological activities of semi-synthetic Hal derivatives, as a starting point for novel drug formulations in cancer therapy.


Asunto(s)
Plectranthus , Humanos , Plectranthus/química , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Diterpenos/farmacología , Diterpenos/química , Diterpenos/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Células K562 , Células HL-60 , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Supervivencia Celular/efectos de los fármacos
4.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256118

RESUMEN

Plectranthus scutellarioides (L.) R.Br. is a medicinal plant that has long been used in traditional medicine to treat conditions such as abscesses, ulcers, and ear and eye infections. It is known to have a wide range of biological properties, such as antibacterial, antioxidant, antifungal, anti-inflammatory, anti-diabetic and anti-cancer effects. In this study, we established in vitro cultures from both the aerial parts and roots of Plectranthus scutellarioides. Subsequently, we compared the basic phytochemical profile of the obtained extracts and conducted a biological analysis to assess their potential for inducing apoptosis in breast (MCF-7) and lung (A549) cancer cells. Phytochemical analysis by HPLC-MS revealed the presence of compounds belonging to phenolic acids (ferulic, syringic, vanillic, rosmarinic, chlorogenic, caffeic, coumaric, dihydroxybenzoic acids), flavonoids (eriodyctiol and cirsimaritin), and terpenes such as 6,11,12,14,16-Pentahydroxy-3,17diacetyl-8,11,13-abietatrien-7-one, 6,11,12,14,16-Pentahydroxy-3,17-diacetyl5,8,11,13-abietatetraen-7-one, and 3,6,12-Trihydroxy-2-acetyl-8,12-abietadien7,11,14-trione. The results show that both extracts have a cytotoxic and genotoxic effect against MCF-7 and A549 cancer cells, with a different degree of sensitivity. It was also shown that both extracts can induce apoptosis by altering the expression of apoptotic genes (Bax, Bcl-2, TP53, Fas, and TNFSF10), reducing mitochondrial membrane potential, increasing ROS levels, and increasing DNA damage. In addition, it has been shown that the tested extracts can alter blood coagulation parameters. Our results indicate that extracts from in vitro cultures of Plectranthus scutellarioides aerial parts and roots have promising therapeutic application, but further research is needed to better understand the mechanisms of their action in the in vitro model.


Asunto(s)
Ácidos Cumáricos , Plectranthus , Humanos , Células A549 , Antibacterianos , Fitoquímicos
5.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894959

RESUMEN

The Lamiaceae is one of the most important families in the production of essential oils known to have a wide spectrum of biological activity. Recent research has highlighted the dermatological capabilities of various Lamiaceae essential oils, which appear to offer potential in free radical scavenging and anti-inflammatory activity. Some have also been extensively studied for their tissue remodeling and wound-healing, anti-aging, anti-melanogenic, and anti-cancer properties. Certain Lamiaceae essential oils are promising as novel therapeutic alternatives for skin disorders. This potential has seen substantial efforts dedicated to the development of modern formulations based on nanotechnology, enabling the topical application of various Lamiaceae essential oils. This review provides a comprehensive summary of the utilization of various essential oils from the Lamiaceae family over the past decade. It offers an overview of the current state of knowledge concerning the use of these oils as antioxidants, anti-inflammatory agents, wound-healers, anti-aging agents, anti-melanogenic agents, and anticancer agents, both alone and in combination with nanoparticles. Additionally, the review explores their potential applicability in patents regarding skin diseases.


Asunto(s)
Investigación Biomédica , Lamiaceae , Aceites Volátiles , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Nanotecnología
6.
J Pers Med ; 13(9)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37763083

RESUMEN

HDAC inhibitors (HDACi) hold great potential as anticancer therapies due to their ability to regulate the acetylation of both histone and non-histone proteins, which is frequently disrupted in cancer and contributes to the development and advancement of the disease. Additionally, HDACi have been shown to enhance the cytotoxic effects of DNA-damaging agents such as radiation and cisplatin. In this study, we found that histone deacetylase inhibits valproic acid (VPA), synergized with PARP1 inhibitor (PARPi), talazoparib (BMN-673), and alkylating agent, and temozolomide (TMZ) to induce DNA damage and reduce glioblastoma multiforme. At the molecular level, VPA leads to a downregulation of FANCD2 and RAD51, and the eradication of glioblastoma cells. The results of this study indicate that combining HDACi with PARPi could potentially enhance the treatment of glioblastoma, the most aggressive type of cancer that originates in the brain.

7.
Molecules ; 28(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37446611

RESUMEN

Nanoparticles (NPs), due to their size, have a key position in nanotechnology as a spectrum of solutions in medicine. NPs improve the ability of active substances to penetrate various routes: transdermal, but also digestive (active endocytosis), respiratory and injection. Chitosan, an N-deacetylated derivative of chitin, is a natural biodegradable cationic polymer with antioxidant, anti-inflammatory and antimicrobial properties. Cross-linked chitosan is an excellent matrix for the production of nanoparticles containing active substances, e.g., the Ginkgo biloba extract (GBE). Chitosan nanoparticles with the Ginkgo biloba extract (GBE) were obtained by ion gelation using TPP as a cross-linking agent. The obtained product was characterized in terms of morphology and size based on SEM and Zeta Sizer analyses as well as an effective encapsulation of GBE in nanoparticles-FTIR-ATR and UV-Vis analyses. The kinetics of release of the active substance in water and physiological saline were checked. Biological studies were carried out on normal and cancer cell lines to check the cytotoxic effect of GBE, chitosan nanoparticles and a combination of the chitosan nanoparticles with GBE. The obtained nanoparticles contained and released GBE encapsulated in research media. Pure NPs, GBE and a combination of NPs and the extract showed cytotoxicity against tumor cells, with no cytotoxicity against the physiological cell line.


Asunto(s)
Quitosano , Nanopartículas , Extractos Vegetales/farmacología , Ginkgo biloba
8.
Genes (Basel) ; 14(6)2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37372475

RESUMEN

The inhibition of histone deacetylases (HDACs) holds promise as a potential anti-cancer therapy as histone and non-histone protein acetylation is frequently disrupted in cancer, leading to cancer initiation and progression. Additionally, the use of a histone deacetylase inhibitor (HDACi) such as the class I HDAC inhibitor-valproic acid (VPA) has been shown to enhance the effectiveness of DNA-damaging factors, such as cisplatin or radiation. In this study, we found that the use of VPA in combination with talazoparib (BMN-673-PARP1 inhibitor-PARPi) and/or Dacarbazine (DTIC-alkylating agent) resulted in an increased rate of DNA double strand breaks (DSBs) and reduced survival (while not affecting primary melanocytes) and the proliferation of melanoma cells. Furthermore, the pharmacological inhibition of class I HDACs sensitizes melanoma cells to apoptosis following exposure to DTIC and BMN-673. In addition, the inhibition of HDACs causes the sensitization of melanoma cells to DTIV and BMN-673 in melanoma xenografts in vivo. At the mRNA and protein level, the histone deacetylase inhibitor downregulated RAD51 and FANCD2. This study aims to demonstrate that combining an HDACi, alkylating agent and PARPi could potentially enhance the treatment of melanoma, which is commonly recognized as being among the most aggressive malignant tumors. The findings presented here point to a scenario in which HDACs, via enhancing the HR-dependent repair of DSBs created during the processing of DNA lesions, are essential nodes in the resistance of malignant melanoma cells to methylating agent-based therapies.


Asunto(s)
Antineoplásicos , Melanoma , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Ácido Valproico/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Dacarbazina/uso terapéutico , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , ADN , Alquilantes/uso terapéutico
9.
Mol Cancer Res ; 21(10): 1017-1022, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37358557

RESUMEN

DNA polymerase theta (Polθ, encoded by POLQ gene) plays an essential role in Polθ-mediated end-joining (TMEJ) of DNA double-strand breaks (DSB). Inhibition of Polθ is synthetic lethal in homologous recombination (HR)-deficient tumor cells. However, DSBs can be also repaired by PARP1 and RAD52-mediated mechanisms. Because leukemia cells accumulate spontaneous DSBs, we tested if simultaneous targeting of Polθ and PARP1 or RAD52 enhance the synthetic lethal effect in HR-deficient leukemia cells. Transformation potential of the oncogenes inducing BRCA1/2-deficiency (BCR-ABL1 and AML1-ETO) was severely limited in Polq-/-;Parp1-/- and Polq-/-;Rad52-/- cells when compared with single knockouts, which was associated with accumulation of DSBs. Small-molecule inhibitor of Polθ (Polθi) when combined with PARP or RAD52 inhibitors (PARPi, RAD52i) caused accumulation of DSBs and exerted increased effect against HR-deficient leukemia and myeloproliferative neoplasm cells. IMPLICATIONS: In conclusion, we show that PARPi or RAD52i might improve therapeutic effect of Polθi against HR-deficient leukemias.


Asunto(s)
Leucemia , Mutaciones Letales Sintéticas , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Recombinación Homóloga , Leucemia/genética , Reparación del ADN , Proteína Recombinante y Reparadora de ADN Rad52/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , ADN Polimerasa theta
10.
Artículo en Inglés | MEDLINE | ID: mdl-36981614

RESUMEN

Inflammation is closely related to asthma and its defining feature: airway remodeling. The aim of this study was to determine the effects of extracts of normal (NR) and transformed (TR) Leonotis nepetifolia roots on respiratory cells and against the gingival epithelium. Extracts from NR and TR roots were added to lung fibroblast, bronchial epithelial and gingival fibroblast cell lines, in the presence of HRV-16 infection, to determine their impact on inflammation. The expression of inflammatory cytokines (IL-6, IL-1ß, GM-CSF and MCAF) as well as total thiol contents were assessed. The TR extract inhibited rhinovirus-induced IL-6 and IL-1ß expression in all tested airway cells (p < 0.05). Additionally, the extract decreased GM-CSF expression in bronchial epithelial cells. The tested extracts had positive effects on total thiol content in all tested cell lines. The TR root extract demonstrated wound healing potential. While both tested extracts exhibited anti-inflammatory and antioxidative effects, they were stronger for the TR extract, possibly due to higher concentrations of beneficial metabolites such as phenols and flavonoids. Additionally, wound healing activity was demonstrated for the TR root extract. These results suggest that TR root extract may become a promising therapeutic agent in the future.


Asunto(s)
Citocinas , Lamiaceae , Humanos , Citocinas/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Interleucina-6 , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Lamiaceae/metabolismo , Inflamación/tratamiento farmacológico
11.
Molecules ; 28(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36903658

RESUMEN

T-2 toxin is produced by different Fusarium species and belongs to the group of type A trichothecene mycotoxins. T-2 toxin contaminates various grains, such as wheat, barley, maize, or rice, thus posing a risk to human and animal health. The toxin has toxicological effects on human and animal digestive, immune, nervous and reproductive systems. In addition, the most significant toxic effect can be observed on the skin. This in vitro study focused on T-2 toxicity on human skin fibroblast Hs68 cell line mitochondria. In the first step of this study, T-2 toxin's effect on the cell mitochondrial membrane potential (MMP) was determined. The cells were exposed to T-2 toxin, which resulted in dose- and time-dependent changes and a decrease in MMP. The obtained results revealed that the changes of intracellular reactive oxygen species (ROS) in the Hs68 cells were not affected by T-2 toxin. A further mitochondrial genome analysis showed that T-2 toxin in a dose- and time-dependent manner decreased the number of mitochondrial DNA (mtDNA) copies in cells. In addition, T-2 toxin genotoxicity causing mtDNA damage was evaluated. It was found that incubation of Hs68 cells in the presence of T-2 toxin, in a dose- and time-dependent manner, increased the level of mtDNA damage in both tested mtDNA regions: NADH dehydrogenase subunit 1 (ND1) and NADH dehydrogenase subunit 5 (ND5). In conclusion, the results of the in vitro study revealed that T-2 toxin shows adverse effects on Hs68 cell mitochondria. T-2 toxin induces mitochondrial dysfunction and mtDNA damage, which may cause the disruption of adenosine triphosphate (ATP) synthesis and, in consequence, cell death.


Asunto(s)
Micotoxinas , Toxina T-2 , Humanos , Línea Celular , ADN Mitocondrial/genética , Fibroblastos/metabolismo , Micotoxinas/metabolismo , NADH Deshidrogenasa/genética , Especies Reactivas de Oxígeno/metabolismo , Toxina T-2/metabolismo
12.
Blood ; 141(19): 2372-2389, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-36580665

RESUMEN

Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.


Asunto(s)
Proteína BRCA1 , Daño del ADN , Leucemia , Animales , Ratones , Proteína BRCA2 , ADN/metabolismo , Leucemia/enzimología , Leucemia/genética , ADN Polimerasa theta
13.
Cells ; 11(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36291112

RESUMEN

Plectranthus ornatus Codd, the genus Plectranthus of the Lamiaceae family, has been used as traditional medicine in Africa, India and Australia. Pharmacological studies show the use of this plant to treat digestive problems. In turn, leaves were used for their antibiotic properties in some regions of Brazil to treat skin infections. The present study examines the anti-inflammatory, antioxidant and cytotoxic effects of the halimane and labdane diterpenes (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and 1α,6ß-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and the forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from P. ornatus on lung (A549) and leukemia (CCRF-CEM) cancer cell lines, and on normal human retinal pigment epithelial (ARPE-19) cell line in vitro. Additionally, molecular docking and computational approaches were used. ADMET properties were analysed through SwissADME and proTox-II-Prediction. The results indicate that all tested compounds significantly reduced the viability of the cancer cells and demonstrated no cytotoxic effects against the non-neoplastic cell line. The apoptosis indicators showed increased ROS levels for both the tested A549 and CCRF-CEM cancer cell lines after treatment. Furthermore, computational studies found HAL to exhibit moderate antioxidant activity. In addition, selected compounds changed mitochondrial membrane potential (MMP), and increased DNA damage and mitochondrial copy number for the CCRF-CEM cancer cell line; they also demonstrated anti-inflammatory effects on the ARPE-19 normal cell line upon lipopolysaccharide (LPS) treatment, which was associated with the modulation of IL-6, IL-8, TNF-α and GM-CSF genes expression. Docking studies gave indication about the lowest binding energy for 1,6-di-O-acetylforskolin docked into IL-6, TNF-α and GM-CSF, and 1,6-di-O-acetyl-9-deoxyforskolin docked into IL-8. The ADMET studies showed drug-likeness properties for the studied compounds. Thus, halimane and labdane diterpenes isolated from P. ornatus appear to offer biological potential; however, further research is necessary to understand their interactions and beneficial properties.


Asunto(s)
Diterpenos , Plectranthus , Humanos , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Antioxidantes/metabolismo , Colforsina , Diterpenos/química , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolisacáridos/metabolismo , Simulación del Acoplamiento Molecular , Plectranthus/química , Plectranthus/metabolismo , Protoporfirinógeno-Oxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pigmentos Retinianos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
14.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232954

RESUMEN

Since cancer treatment by radio- and chemotherapy has been linked to safety concerns, there is a need for new and alternative anticancer drugs; as such, compounds isolated from plants represent promising candidates. The current study investigates the anticancer features of halimane (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and the labdane diterpenes 1α,6ß-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from Plectranthus ornatus in MCF7 and FaDu cancer cell lines. Cytotoxicity was assessed by MTT assay, ROS production by Di-chloro-dihydro-fluorescein diacetate assay (DCFH) or Red Mitochondrial Superoxide Indicator (MitoSOX) and Mitochondrial Membrane Potential (MMP) by fluorescent probe JC-1 (5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide). In addition, the relative amounts of mitochondrial DNA (mtDNA) were determined using quantitative Real-Time-PCR (qRT-PCR) and damage to mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) by semi-long run quantitative Real-Time-PCR (SLR-qRT-PCR). Gene expression was determined using Reverse-Transcription-qPCR. Caspase-3/7 activity by fluorescence was assessed. Assessment of General In Vivo Toxicity has been determined by Brine Shrimp Lethality Bioassay. The studied HAL and PLEC were found to have a cytotoxic effect in MCF7 with IC50 = 13.61 µg/mL and IC50 = 17.49 µg/mL and in FaDu with IC50 = 15.12 µg/mL and IC50 = 32.66 µg/mL cancer cell lines. In the two tested cancer cell lines, the phytochemicals increased ROS production and mitochondrial damage in the ND1 and ND5 gene regions and reduced MMP (ΔΨm) and mitochondrial copy numbers. They also changed the expression of pro- and anti-apoptotic genes (Bax, Bcl-2, TP53, Cas-3, Cas-8, Cas-9, Apaf-1 and MCL-1). Studies demonstrated increase in caspase 3/7 activity in tested cancer cell lines. In addition, we showed no toxic effect in in vivo test for the compounds tested. The potential mechanism of action may have been associated with the induction of apoptosis in MCF7 and FaDu cancer cells via the mitochondrial pathway; however, further in vivo research is needed to understand the mechanisms of action and potential of these compounds.


Asunto(s)
Antineoplásicos , Diterpenos , Plectranthus , Antineoplásicos/farmacología , Apoptosis , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Colforsina/farmacología , ADN Mitocondrial/metabolismo , Diterpenos/farmacología , Colorantes Fluorescentes/farmacología , Yoduros , Potencial de la Membrana Mitocondrial , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Fitoquímicos/metabolismo , Fitoquímicos/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxidos , Proteína X Asociada a bcl-2/metabolismo
15.
Genes (Basel) ; 13(6)2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35741863

RESUMEN

Research studies regarding synthetic lethality (SL) in human cells are primarily motivated by the potential of this phenomenon to be an effective, but at the same time, safe to the patient's anti-cancer chemotherapy. Among the factors that are targets for the induction of the synthetic lethality effect, those involved in DNA repair seem to be the most relevant. Specifically, when mutation in one of the canonical DNA double-strand break (DSB) repair pathways occurs, which is a frequent event in cancer cells, the alternative pathways may be a promising target for the elimination of abnormal cells. Currently, inhibiting RAD52 and/or PARP1 in the tumor cells that are deficient in the canonical repair pathways has been the potential target for inducing the effect of synthetic lethality. Unfortunately, the development of resistance to commonly used PARP1 inhibitors (PARPi) represents the greatest obstacle to working out a successful treatment protocol. DNA polymerase theta (Polθ), encoded by the POLQ gene, plays a key role in an alternative DSB repair pathway-theta-mediated end joining (TMEJ). Thus, it is a promising target in the treatment of tumors harboring deficiencies in homologous recombination repair (HRR), where its inhibition can induce SL. In this review, the authors discuss the current state of knowledge on Polθ as a potential target for synthetic lethality-based anticancer therapies.


Asunto(s)
Neoplasias , Mutaciones Letales Sintéticas , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Reparación del ADN por Recombinación , Mutaciones Letales Sintéticas/genética
16.
Curr Pharm Biotechnol ; 23(11): 1383-1395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35249478

RESUMEN

BACKGROUND: Leonotis nepetifolia (L.) R. Br. (Lamiaceae) is a shrub traditionally used to alleviate inflammatory conditions. OBJECTIVES: The present study aimed at investigating the biological activity of methanolic nontransformed and transformed Rhizobium rhizogenes root extracts from L. nepetifolia against human melanoma cells. METHODS: Cytotoxicity and genotoxicity properties, the impact on topoisomerase I activity, and proapoptotic activity were evaluated by the MTT test, comet assay, topoisomerase I assay, and fluorescence-activated cell sorting analysis. Moreover, the expressions of p53 were examined by qPCR and Western blot analysis. Docking studies were conducted to assess the potential interactions of the identified phytochemicals with the p53 binding protein Mdm-2, and computational analyses exhibited their antioxidant potential. RESULTS: Both extracts showed cytotoxic potential against human melanoma cells, but generally the activity was more potent for transformed roots than untransformed (IC50 760 µg/mL and 980 µg/mL, respectively). A similar effect was revealed during the evaluation of genotoxic and proapoptotic properties. Moreover, the expression of p53 was also found to be increased after extract treatment. The most dominant identified compounds in both extracts were as follows: (+)- catechin, p-coumaric acid, m-coumaric acid, and (+)-rosmarinic acid. Docking studies and computational analysis showed that (+)-rosmarinic acid possesses the highest binding affinity to the p53 binding protein, Mdm-2, and exhibits the best antioxidant property from the most commonly identified phytochemicals. CONCLUSION: Our findings revealed the potential of L. nepetifolia transformed root extract as a source of bioactive compounds with cytotoxic, genotoxic, and proapoptotic activity against human melanoma cells as well as antioxidant properties.


Asunto(s)
Lamiaceae , Melanoma , Antioxidantes/química , ADN-Topoisomerasas de Tipo I , Humanos , Lamiaceae/química , Melanoma/tratamiento farmacológico , Fitoquímicos/análisis , Extractos Vegetales/química , Proteína p53 Supresora de Tumor/genética
17.
Cancers (Basel) ; 14(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35326606

RESUMEN

Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.

18.
Cancers (Basel) ; 14(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35159021

RESUMEN

Species of orchids, which belong to the largest family of flowering plants, are commonly used in folk medicine for the treatment of infections and tumors. However, little is known about the actual chemical composition of these plants and their anticancer properties. In this paper, the most recent literature on orchid-derived bioactive substances with anticancer properties is reviewed. For the assessment, previous papers on the anticancer activity of Orchidaceae published since 2015 were considered. The papers were found by exploring electronic databases. According to the available data, many species of orchids contain potential antitumor chemicals. The bioactive substances in a relatively insignificant number of orchids are identified, and most studies are on Asian taxa. Broader research on American and African species and the correct identification of samples included in the experiments are essential for evaluating the usefulness of orchids as a plant family with vast anticancer potential.

19.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36613762

RESUMEN

DNA polymerase theta (Polθ)-mediated end joining (TMEJ) is, along with homologous recombination (HR) and non-homologous end-joining (NHEJ), one of the most important mechanisms repairing potentially lethal DNA double-strand breaks (DSBs). Polθ is becoming a new target in cancer research because it demonstrates numerous synthetically lethal interactions with other DNA repair mechanisms, e.g., those involving PARP1, BRCA1/2, DNA-PK, ATR. Inhibition of Polθ could be achieved with different methods, such as RNA interference (RNAi), CRISPR/Cas9 technology, or using small molecule inhibitors. In the context of this topic, RNAi and CRISPR/Cas9 are still more often applied in the research itself rather than clinical usage, different than small molecule inhibitors. Several Polθ inhibitors have been already generated, and two of them, novobiocin (NVB) and ART812 derivative, are being tested in clinical trials against HR-deficient tumors. In this review, we describe the significance of Polθ and the Polθ-mediated TMEJ pathway. In addition, we summarize the current state of knowledge about Polθ inhibitors and emphasize the promising role of Polθ as a therapeutic target.


Asunto(s)
Reparación del ADN , Neoplasias , Inhibidores de la Síntesis del Ácido Nucleico , Humanos , ADN/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Recombinación Homóloga , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , ADN Polimerasa theta
20.
Molecules ; 26(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34684788

RESUMEN

It is known that Senna obtusifolia has been used in medicine since ancient times due to the content of many valuable compounds with a pro-health effect. One of them is betulinic acid, which is a pentacyclic triterpene with antimalarial, antiviral, anti-inflammatory and anticancer properties. In this work, a continuation of our previous research, an attempt was made to increase the level of betulinic acid accumulation by the cultivation of transgenic hairy roots that overexpress the squalene synthase gene in a 10 L sprinkle bioreactor with methyl jasmonate elicitation. We present that the applied strategy allowed us to increase the content of betulinic acid in hairy root cultures to the level of 48 mg/g dry weight. The obtained plant extracts showed a stronger cytotoxic effect on the U87MG glioblastoma cell line than the roots grown without elicitors. Additionally, the induction of apoptosis, reduction of mitochondrial membrane potential, chromosomal DNA fragmentation and activation of caspase cascades are demonstrated. Moreover, the tested extract showed inhibition of topoisomerase I activity.


Asunto(s)
Acetatos/farmacología , Antineoplásicos Fitogénicos/metabolismo , Ciclopentanos/farmacología , Oxilipinas/farmacología , Triterpenos Pentacíclicos/metabolismo , Senna/efectos de los fármacos , Senna/metabolismo , Células A549 , Antineoplásicos Fitogénicos/biosíntesis , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Reactores Biológicos , Biotecnología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Fragmentación del ADN/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Triterpenos Pentacíclicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantas Medicinales/efectos de los fármacos , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/metabolismo , Senna/crecimiento & desarrollo , Ácido Betulínico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA