Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Emerg Infect Dis ; 30(4): 721-731, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526136

RESUMEN

Genetically diverse simian arteriviruses (simarteriviruses) naturally infect geographically and phylogenetically diverse monkeys, and cross-species transmission and emergence are of considerable concern. Characterization of most simarteriviruses beyond sequence analysis has not been possible because the viruses fail to propagate in the laboratory. We attempted to isolate 4 simarteriviruses, Kibale red colobus virus 1, Pebjah virus, simian hemorrhagic fever virus, and Southwest baboon virus 1, by inoculating an immortalized grivet cell line (known to replicate simian hemorrhagic fever virus), primary macaque cells, macrophages derived from macaque induced pluripotent stem cells, and mice engrafted with macaque CD34+-enriched hematopoietic stem cells. The combined effort resulted in successful virus isolation; however, no single approach was successful for all 4 simarteriviruses. We describe several approaches that might be used to isolate additional simarteriviruses for phenotypic characterization. Our results will expedite laboratory studies of simarteriviruses to elucidate virus-host interactions, assess zoonotic risk, and develop medical countermeasures.


Asunto(s)
Arterivirus , Animales , Ratones , Arterivirus/genética , Macaca , Macrófagos , Línea Celular
2.
iScience ; 26(5): 106621, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37250328

RESUMEN

Hemogenic endothelium (HE) is the main source of blood cells in the embryo. To improve blood manufacturing from human pluripotent stem cells (hPSCs), it is essential to define the molecular determinants that enhance HE specification and promote development of the desired blood lineage from HE. Here, using SOX18-inducible hPSCs, we revealed that SOX18 forced expression at the mesodermal stage, in contrast to its homolog SOX17, has minimal effects on arterial specification of HE, expression of HOXA genes and lymphoid differentiation. However, forced expression of SOX18 in HE during endothelial-to-hematopoietic transition (EHT) greatly increases NK versus T cell lineage commitment of hematopoietic progenitors (HPs) arising from HE predominantly expanding CD34+CD43+CD235a/CD41a-CD45- multipotent HPs and altering the expression of genes related to T cell and Toll-like receptor signaling. These studies improve our understanding of lymphoid cell specification during EHT and provide a new tool for enhancing NK cell production from hPSCs for immunotherapies.

3.
Stem Cell Reports ; 18(2): 585-596, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36638788

RESUMEN

Macrophages armed with chimeric antigen receptors (CARs) provide a potent new option for treating solid tumors. However, genetic engineering and scalable production of somatic macrophages remains significant challenges. Here, we used CRISPR-Cas9 gene editing methods to integrate an anti-GD2 CAR into the AAVS1 locus of human pluripotent stem cells (hPSCs). We then established a serum- and feeder-free differentiation protocol for generating CAR macrophages (CAR-Ms) through arterial endothelial-to-hematopoietic transition (EHT). CAR-M produced by this method displayed a potent cytotoxic activity against GD2-expressing neuroblastoma and melanoma in vitro and neuroblastoma in vivo. This study provides a new platform for the efficient generation of off-the-shelf CAR-Ms for antitumor immunotherapy.


Asunto(s)
Melanoma , Neuroblastoma , Células Madre Pluripotentes , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores de Antígenos de Linfocitos T/genética , Inmunoterapia/métodos , Células Madre Pluripotentes/patología , Melanoma/terapia , Neuroblastoma/terapia , Neuroblastoma/patología , Macrófagos/patología
4.
Retrovirology ; 19(1): 17, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948929

RESUMEN

Nonhuman primates (NHPs) are well-established basic and translational research models for human immunodeficiency virus (HIV) infections and pathophysiology, hematopoietic stem cell (HSC) transplantation, and assisted reproductive technologies. Recent advances in CRISPR/Cas9 gene editing technologies present opportunities to refine NHP HIV models for investigating genetic factors that affect HIV replication and designing cellular therapies that exploit genetic barriers to HIV infections, including engineering mutations into CCR5 and conferring resistance to HIV/simian immunodeficiency virus (SIV) infections. In this report, we provide an overview of recent advances and challenges in gene editing NHP embryos and discuss the value of genetically engineered animal models for developing novel stem cell-based therapies for curing HIV.


Asunto(s)
Edición Génica , Infecciones por VIH , Animales , Sistemas CRISPR-Cas , Humanos , Primates , Células Madre
5.
Sci Rep ; 12(1): 12345, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853970

RESUMEN

Allogeneic hematopoietic stem cell transplants (allo-HSCTs) dramatically reduce HIV reservoirs in antiretroviral therapy (ART) suppressed individuals. However, the mechanism(s) responsible for these post-transplant viral reservoir declines are not fully understood. Therefore, we modeled allo-HSCT in ART-suppressed simian-human immunodeficiency virus (SHIV)-infected Mauritian cynomolgus macaques (MCMs) to illuminate factors contributing to transplant-induced viral reservoir decay. Thus, we infected four MCMs with CCR5-tropic SHIV162P3 and started them on ART 6-16 weeks post-infection (p.i.), maintaining continuous ART during myeloablative conditioning. To prevent graft-versus-host disease (GvHD), we transplanted allogeneic MHC-matched α/ß T cell-depleted bone marrow cells and prophylactically treated the MCMs with cyclophosphamide and tacrolimus. The transplants produced ~ 85% whole blood donor chimerism without causing high-grade GvHD. Consequently, three MCMs had undetectable SHIV DNA in their blood post-transplant. However, SHIV-harboring cells persisted in various tissues, with detectable viral DNA in lymph nodes and tissues between 38 and 62 days post-transplant. Further, removing one MCM from ART at 63 days post-transplant resulted in SHIV rapidly rebounding within 7 days of treatment withdrawal. In conclusion, transplanting SHIV-infected MCMs with allogeneic MHC-matched α/ß T cell-depleted bone marrow cells prevented high-grade GvHD and decreased SHIV-harboring cells in the blood post-transplant but did not eliminate viral reservoirs in tissues.


Asunto(s)
Enfermedad Injerto contra Huésped , Infecciones por VIH , Trasplante de Células Madre Hematopoyéticas , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Trasplante de Médula Ósea/efectos adversos , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , VIH , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Macaca fascicularis , Receptores de Antígenos de Linfocitos T , Virus de la Inmunodeficiencia de los Simios/genética
6.
Methods Mol Biol ; 2429: 103-124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35507158

RESUMEN

Endothelial-to-hematopoietic transition (EHT) is a unique morphogenic event in which flat, adherent hemogenic endothelial (HE) cells acquire round, non-adherent blood cell morphology. Investigating the mechanisms of EHT is critical for understanding the development of hematopoietic stem cells (HSCs) and the entirety of the adult immune system, and advancing technologies for manufacturing blood cells from human pluripotent stem cells (hPSCs). Here we describe a protocol to (a) generate and isolate subsets of HE from hPSCs, (b) assess EHT and hematopoietic potential of HE subsets in bulk cultures and at the single-cell level, and (c) evaluate the role of NOTCH signaling during HE specification and EHT. The generation of HE from hPSCs and EHT bulk cultures are performed in xenogen- and feeder-free system, providing the unique advantage of being able to investigate the role of individual signaling factors during EHT and the definitive lympho-myeloid cell specification from hPSCs.


Asunto(s)
Hemangioblastos , Células Madre Pluripotentes , Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas , Humanos
7.
Stem Cell Reports ; 17(4): 953-963, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35364011

RESUMEN

Adoptive therapies with genetically modified somatic T cells rendered HIV resistance have shown promise for AIDS therapy. A renewable source of HIV-resistant human T cells from induced pluripotent stem cells (iPSCs) would further facilitate and broaden the applicability of these therapies. Here, we report successful targeting of the CCR5 locus in iPSCs generated from T cells (T-iPSCs) or fibroblasts (fib-iPSCs) from Mauritian cynomolgus macaques (MCM), using CRISPR-Cas9 technology. We found that CCR5 editing does not affect hematopoietic and T cell differentiation potentials of fib-iPSCs. However, T-iPSCs with edited CCR5 lost their capacity to differentiate into CD4+CD8+ T cells while maintaining myeloid differentiation potential. T cells and macrophages produced from CCR5-edited MCM iPSCs did not support replication of the CCR5-tropic simian immunodeficiency viruses SIVmac239 (T cell tropic) and SIVmac316 (macrophage-tropic). Overall, these studies provide a platform for further exploration of AIDS therapies based on gene-edited iPSCs in a nonhuman primate model.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Células Madre Pluripotentes Inducidas , Animales , Linfocitos T CD8-positivos , Macaca fascicularis , Macrófagos , Receptores CCR5/genética
8.
Blood Adv ; 6(18): 5267-5278, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35404997

RESUMEN

Administration of ex vivo expanded somatic myeloid progenitors has been explored as a way to facilitate a more rapid myeloid recovery and improve overall survival after myeloablation. Recent advances in induced pluripotent stem cell (iPSC) technologies have created alternative platforms for supplying off-the-shelf immunologically compatible myeloid progenitors, including cellular products derived from major histocompatibility complex (MHC) homozygous superdonors, potentially increasing the availability of MHC-matching cells and maximizing the utility of stem cell banking. However, the teratogenic and tumorigenic potential of iPSC-derived progenitor cells and whether they will induce alloreactive antibodies upon transfer remain unclear. We evaluated the safety and efficacy of using CD34+CD45+ hematopoietic progenitors derived from MHC homozygous iPSCs (iHPs) to treat cytopenia after myeloablative hematopoietic stem cell (HSC) transplantation in a Mauritian cynomolgus macaque (MCM) nonhuman primate (NHP) model. We demonstrated that infusion of iHPs was well tolerated and safe, observing no teratomas or tumors in the MCMs up to 1 year after HSC transplantation and iHP infusion. Importantly, the iHPs also did not induce significant levels of alloantibodies in MHC-matched or -mismatched immunocompetent MCMs, even after increasing MHC expression on iHPs with interferon-γ. These results support the feasibility of iHP use in the setting of myeloablation and suggest that iHP products pose a low risk of inducing alloreactive antibodies.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Pluripotentes Inducidas , Animales , Antígenos CD34 , Interferón gamma , Isoanticuerpos , Macaca fascicularis , Complejo Mayor de Histocompatibilidad
9.
Cell Rep ; 34(7): 108758, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33596423

RESUMEN

SOX17 has been implicated in arterial specification and the maintenance of hematopoietic stem cells (HSCs) in the murine embryo. However, knowledge about molecular pathways and stage-specific effects of SOX17 in humans remains limited. Here, using SOX17-knockout and SOX17-inducible human pluripotent stem cells (hPSCs), paired with molecular profiling studies, we reveal that SOX17 is a master regulator of HOXA and arterial programs in hemogenic endothelium (HE) and is required for the specification of HE with robust lympho-myeloid potential and DLL4+CXCR4+ phenotype resembling arterial HE at the sites of HSC emergence. Along with the activation of NOTCH signaling, SOX17 directly activates CDX2 expression, leading to the upregulation of the HOXA cluster genes. Since deficiencies in HOXA and NOTCH signaling contribute to the impaired in vivo engraftment of hPSC-derived hematopoietic cells, the identification of SOX17 as a key regulator linking arterial and HOXA programs in HE may help to program HSC fate from hPSCs.


Asunto(s)
Hematopoyesis/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción SOXF/metabolismo , Animales , Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo
10.
Exp Hematol ; 93: 44-51, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33176119

RESUMEN

Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a potentially curative treatment for hematologic cancers and chronic infections such as human immunodeficiency virus (HIV). Its success in these settings is attributed to the ability of engrafting immune cells to eliminate cancer cells or deplete the HIV reservoir (graft-versus-host effect [GvHE]). However, alloHSCT is commonly associated with graft-versus-host diseases (GvHDs) causing significant morbidity and mortality, thereby requiring development of novel allogeneic HSCT protocols and therapies promoting GvHE without GvHD using physiologically relevant preclinical models. Here we evaluated the outcomes of major histocompatibility complex-matched T-cell receptor α/ß-depleted alloHSCT in Mauritian cynomolgus macaques (MCMs). Following T-cell receptor α/ß depletion, bone marrow cells were transplanted into major histocompatibility complex-identical MCMs conditioned with total body irradiation. GvHD prophylaxis included sirolimus alone in two animals or tacrolimus with cyclophosphamide in another two animals. Posttransplant chimerism was determined by sequencing diagnostic single-nucleotide polymorphisms to quantify the amounts of donor and recipient cells present in blood. Animals treated posttransplant with sirolimus developed nearly complete chimerism with acute GvHD. In the cyclophosphamide and tacrolimus treatment group, animals developed mixed chimerism without GvHD, with long-term engraftment observed in one animal. None of the animals developed cytomegalovirus infection. These studies indicate the feasibility of alloHSCT engraftment without GvHD in an MHC-identical MCM model following complete myeloablative conditioning and anti-GvHD prophylaxis with posttransplant cyclophosphamide and tacrolimus. Further exploration of this model will provide a platform for elucidating the mechanisms of GvHD and GvHE and for testing novel alloHSCT modalities for HIV infection.


Asunto(s)
Células de la Médula Ósea/citología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/métodos , Receptores de Antígenos de Linfocitos T/aislamiento & purificación , Animales , Femenino , Células Madre Hematopoyéticas/citología , Inmunosupresores/uso terapéutico , Macaca fascicularis , Masculino , Sirolimus/uso terapéutico , Acondicionamiento Pretrasplante/métodos , Trasplante Homólogo/métodos , Irradiación Corporal Total/métodos
11.
Front Oncol ; 10: 585151, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363015

RESUMEN

Numerous recurrent genetic mutations are known to occur in acute myeloid leukemia (AML). Among these common mutations, Fms-like tyrosine kinase 3 remains as one of the most frequently mutated genes in AML. We observed apparent marrow expansion of megakaryocytes in three out of six patients with Flt3-mutated AML following treatment with a recently FDA-approved Flt3 inhibitor, gilteritinib which possesses activity against internal tandem duplication and tyrosine kinase domain Flt3 mutations and also inhibits tyrosine kinase AXL. To assess whether biopsy findings can be attributed to promotion of megakaryocytic (Mk) differentiation with gilteritinib, we devised a cellular assay by overexpressing double mutated Flt3-ITDY591F/Y919F in chronic myeloid leukemia cell line K562 to study Mk differentiation in the presence of Flt3 and AXL inhibitors with non-mutually exclusive mechanisms. These experiments demonstrated the lack of direct effect Flt3 inhibitors gilteritinib and quizartinib on megakaryocytic differentiation at either transcriptional or phenotypic levels, and highlighted antileukemic effects of AXL receptor tyrosine kinase inhibitor and its potential role in megakaryocytic development.

12.
Nat Med ; 26(11): 1720-1725, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32929265

RESUMEN

The therapeutic potential of donor-derived mesenchymal stromal cells (MSCs) has been investigated in diverse diseases1, including steroid-resistant acute graft versus host disease (SR-aGvHD)2. However, conventional manufacturing approaches are hampered by challenges with scalability and interdonor variability, and clinical trials have shown inconsistent outcomes3,4. Induced pluripotent stem cells (iPSCs) have the potential to overcome these challenges, due to their capacity for multilineage differentiation and indefinite proliferation5,6. Nonetheless, human clinical trials of iPSC-derived cells have not previously been completed. CYP-001 (iPSC-derived MSCs) is produced using an optimized, good manufacturing practice (GMP)-compliant manufacturing process. We conducted a phase 1, open-label clinical trial (no. NCT02923375) in subjects with SR-aGvHD. Sixteen subjects were screened and sequentially assigned to cohort A or cohort B (n = 8 per group). One subject in cohort B withdrew before receiving CYP-001 and was excluded from analysis. All other subjects received intravenous infusions of CYP-001 on days 0 and 7, at a dose level of either 1 × 106 cells per kg body weight, to a maximum of 1 × 108 cells per infusion (cohort A), or 2 × 106 cells per kg body weight, to a maximum dose of 2 × 108 cells per infusion (cohort B). The primary objective was to assess the safety and tolerability of CYP-001, while the secondary objectives were to evaluate efficacy based on the proportion of participants who showed a complete response (CR), overall response (OR) and overall survival (OS) by days 28/100. CYP-001 was safe and well tolerated. No serious adverse events were assessed as related to CYP-001. OR, CR and OS rates by day 100 were 86.7, 53.3 and 86.7%, respectively. The therapeutic application of iPSC-derived MSCs may now be explored in diverse inflammatory and immune-mediated diseases.


Asunto(s)
Enfermedad Injerto contra Huésped/terapia , Células Madre Pluripotentes Inducidas/trasplante , Trasplante de Células Madre Mesenquimatosas , Esteroides/uso terapéutico , Adolescente , Adulto , Anciano , Resistencia a Medicamentos , Femenino , Enfermedad Injerto contra Huésped/patología , Humanos , Masculino , Persona de Mediana Edad , Inducción de Remisión/métodos , Esteroides/efectos adversos , Tasa de Supervivencia , Adulto Joven
13.
Bio Protoc ; 10(13): e3675, 2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659345

RESUMEN

Pluripotent stem cells (PSCs) have the potential to provide homogeneous cell populations of T cells that can be grown at a clinical scale and genetically engineered to meet specific clinical needs. OP9-DLL4, a stromal line ectopically expressing the Notch ligand Delta-like 4 (DLL4) is used to support differentiation of PSCs to T-lymphocytes. This article outlines several protocols related to generation of T cells from human and non-human primate (NHP) PSCs, including initial hematopoietic differentiation of PSC on OP9 feeders or defined conditions, followed by coculture of the OP9-DLL4 cells with the PSC-derived hematopoietic progenitors (HPs), leading to efficient differentiation to T lymphocytes. In addition, we describe a protocol for robust T cell generation from hPSCs conditionally expressing ETS1. The presented protocols provide a platform for T cell production for disease modeling and evaluating their use for immunotherapy in large animal models.

14.
Stem Cell Reports ; 13(6): 1099-1110, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31708474

RESUMEN

Human induced pluripotent stem cells (hiPSCs) can serve as a versatile and scalable source of neutrophils for biomedical research and transfusion therapies. Here we describe a rapid efficient serum- and xenogen-free protocol for neutrophil generation, which is based on direct hematoendothelial programming of hiPSCs using ETV2-modified mRNA. Culture of ETV2-induced hematoendothelial progenitors in the presence of GM-CSF, FGF2, and UM171 led to continuous production of generous amounts of CD34+CD33+ myeloid progenitors which could be harvested every 8-10 days for up to 30 days of culture. Subsequently, myeloid progenitors were differentiated into neutrophils in the presence of G-CSF and the retinoic acid agonist Am580. Neutrophils obtained in these conditions displayed a typical somatic neutrophil morphology, produced reactive oxygen species, formed neutrophil extracellular traps and possessed phagocytic and chemotactic activities. Overall, this technology offers an opportunity to generate a significant number of neutrophils as soon as 14 days after initiation of differentiation.


Asunto(s)
Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , ARN Mensajero , Factores de Transcripción/genética , Biomarcadores , Células Cultivadas , Trampas Extracelulares/genética , Trampas Extracelulares/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis , Humanos , Inmunofenotipificación , Leucopoyesis/genética , Células Progenitoras Mieloides/citología , Células Progenitoras Mieloides/metabolismo , Neutrófilos/citología
15.
Blood ; 134(16): 1298-1311, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31416800

RESUMEN

Therapeutic gene delivery to hematopoietic stem cells (HSCs) holds great potential as a life-saving treatment of monogenic, oncologic, and infectious diseases. However, clinical gene therapy is severely limited by intrinsic HSC resistance to modification with lentiviral vectors (LVs), thus requiring high doses or repeat LV administration to achieve therapeutic gene correction. Here we show that temporary coapplication of the cyclic resveratrol trimer caraphenol A enhances LV gene delivery efficiency to human and nonhuman primate hematopoietic stem and progenitor cells with integrating and nonintegrating LVs. Although significant ex vivo, this effect was most dramatically observed in human lineages derived from HSCs transplanted into immunodeficient mice. We further show that caraphenol A relieves restriction of LV transduction by altering the levels of interferon-induced transmembrane (IFITM) proteins IFITM2 and IFITM3 and their association with late endosomes, thus augmenting LV core endosomal escape. Caraphenol A-mediated IFITM downregulation did not alter the LV integration pattern or bias lineage differentiation. Taken together, these findings compellingly demonstrate that the pharmacologic modification of intrinsic immune restriction factors is a promising and nontoxic approach for improving LV-mediated gene therapy.


Asunto(s)
Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/virología , Proteínas de la Membrana/efectos de los fármacos , Resveratrol/farmacología , Transducción Genética/métodos , Animales , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Vectores Genéticos , Xenoinjertos , Humanos , Lentivirus , Proteínas de la Membrana/metabolismo , Ratones , Transporte de Proteínas/efectos de los fármacos
16.
Sci Rep ; 9(1): 6622, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31036928

RESUMEN

Scaling up blood cell production from hPSCs is critical to advancing hPSC technologies for blood transfusion, immunotherapy, and transplantation. Here we explored the potential of the HSC agonist pyrimido-indole derivative UM171, to expand hematopoietic progenitors (HPs) derived from hPSCs in chemically defined conditions. We revealed that culture of hPSC-HPs in HSC expansion conditions (SFEM with added TPO, SCF, FLT3L, IL3 and IL6) in the presence of UM171 predominantly expanded HPs with a unique CD34+CD41aloCD45+ phenotype that were enriched in granulocytic progenitors (G-CFCs). In contrast, in lymphoid cultures on OP9-DLL4, in the presence of SCF, FLT3L, and IL7, UM171 selectively expanded CD34+CD45+CD7+ lymphoid progenitors with NK cell potential, and increased NK cell output up to 10-fold. These studies should improve our understanding of the effect of UM171 on de novo generated HPs, and facilitate development of protocols for robust granulocyte and lymphoid cell production from hPSCs, for adoptive immunotherapies.


Asunto(s)
Indoles/farmacología , Células Asesinas Naturales/citología , Células Asesinas Naturales/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Pirimidinas/farmacología , Antígenos CD34/metabolismo , Antígenos CD7/metabolismo , Diferenciación Celular/efectos de los fármacos , Citometría de Flujo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Antígenos Comunes de Leucocito/metabolismo , Leucosialina/metabolismo , Fenotipo
17.
Stem Cell Res ; 35: 101401, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30738321

RESUMEN

The immune-mediated tissue destruction of graft-vs-host disease (GvHD) remains a major barrier to greater use of hematopoietic stem cell transplantation (HSCT). Mesenchymal stem cells (MSCs) have intrinsic immunosuppressive qualities and are being actively investigated as a therapeutic strategy for treating GvHD. We characterized Cymerus™ MSCs, which are derived from adult, induced pluripotent stem cells (iPSCs), and show they display surface markers and tri-lineage differentiation consistent with MSCs isolated from bone marrow (BM). Administering iPSC-MSCs altered phosphorylation and cellular localization of the T cell-specific kinase, Protein Kinase C theta (PKCθ), attenuated disease severity, and prolonged survival in a humanized mouse model of GvHD. Finally, we evaluated a constellation of pro-inflammatory molecules on circulating PBMCs that correlated closely with disease progression and which may serve as biomarkers to monitor therapeutic response. Altogether, our data suggest Cymerus iPSC-MSCs offer the potential for an off-the-shelf, cell-based therapy to treat GvHD.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Células Madre Pluripotentes Inducidas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Modelos Animales de Enfermedad , Femenino , Enfermedad Injerto contra Huésped/metabolismo , Enfermedad Injerto contra Huésped/patología , Enfermedad Injerto contra Huésped/terapia , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/trasplante , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos NOD
18.
J Immunol ; 202(3): 770-776, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30578305

RESUMEN

Human pluripotent stem cells (hPSCs) offer the potential to serve as a versatile and scalable source of T cells for immunotherapies, which could be coupled with genetic engineering technologies to meet specific clinical needs. To improve T cell production from hPSCs, it is essential to identify cell subsets that are highly enriched in T cell progenitors and those stages of development at which NOTCH activation induces the most potent T cells. In this study, we evaluated the efficacy of T cell production from cell populations isolated at different stages of hematopoietic differentiation, including mesoderm, hemogenic endothelium (HE), and multipotent hematopoietic progenitors. We demonstrate that KDRhiCD31- hematovascular mesodermal progenitors (HVMPs) with definitive hematopoietic potential produce the highest numbers of T cells when cultured on OP9-DLL4 as compared with downstream progenitors, including HE and multipotent hematopoietic progenitors. In addition, we found that T cells generated from HVMPs have the capacity to expand for 6-7 wk in vitro, in comparison with T cells generated from HE and hematopoietic progenitors, which could only be expanded for 4-5 wk. Demonstrating the critical need of NOTCH activation at the HVMP stage of hematopoietic development to establish robust T cell production from hPSCs may aid in establishing protocols for the efficient off-the-shelf production and expansion of T cells for treating hematologic malignancies.


Asunto(s)
Proliferación Celular , Linfopoyesis , Mesodermo/citología , Células Madre Pluripotentes/citología , Receptor Notch1/genética , Linfocitos T/citología , Animales , Línea Celular , Técnicas de Cocultivo , Fibroblastos , Citometría de Flujo , Humanos , Ratones
19.
Exp Hematol ; 71: 3-12, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30500414

RESUMEN

Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the de novo production of blood cells for transfusion, immunotherapies, and transplantation. However, even with advanced hematopoietic differentiation methods, the primitive and myeloid-restricted waves of hematopoiesis dominate in hPSC differentiation cultures, whereas cell surface markers to distinguish these waves of hematopoiesis from lympho-myeloid hematopoiesis remain unknown. In the embryo, hematopoietic stem cells (HSCs) arise from hemogenic endothelium (HE) lining arteries, but not veins. This observation led to a long-standing hypothesis that arterial specification is an essential prerequisite to initiate the HSC program. It has also been established that lymphoid potential in the yolk sac and extraembryonic vasculature is mostly confined to arteries, whereas myeloid-restricted hematopoiesis is not specific to arterial vessels. Here, we review how the link between arterialization and the subsequent definitive multilineage hematopoietic program can be exploited to identify HE enriched in lymphoid progenitors and aid in in vitro approaches to enhance the production of lymphoid cells and potentially HSCs from hPSCs. We also discuss alternative models of hematopoietic specification at arterial sites and recent advances in our understanding of hematopoietic development and the production of engraftable hematopoietic cells from hPSCs.


Asunto(s)
Arterias , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Neovascularización Fisiológica , Animales , Arterias/embriología , Arterias/metabolismo , Biomarcadores , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Humanos
20.
Cell Mol Life Sci ; 75(19): 3507-3520, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29992471

RESUMEN

Mesenchymoangioblast (MB) is the earliest precursor for endothelial and mesenchymal cells originating from APLNR+PDGFRα+KDR+ mesoderm in human pluripotent stem cell cultures. MBs are identified based on their capacity to form FGF2-dependent compact spheroid colonies in a serum-free semisolid medium. MBs colonies are composed of PDGFRß+CD271+EMCN+DLK1+CD73- primitive mesenchymal cells which are generated through endothelial/angioblastic intermediates (cores) formed during first 3-4 days of clonogenic cultures. MB-derived primitive mesenchymal cells have potential to differentiate into mesenchymal stromal/stem cells (MSCs), pericytes, and smooth muscle cells. In this review, we summarize the specification and developmental potential of MBs, emphasize features that distinguish MBs from other mesenchymal progenitors described in the literature and discuss the value of these findings for identifying molecular pathways leading to MSC and vasculogenic cell specification, and developing cellular therapies using MB-derived progeny.


Asunto(s)
Células Endoteliales/citología , Células Madre Mesenquimatosas/citología , Mesodermo/citología , Enfermedades Autoinmunes/terapia , Linaje de la Célula , Desarrollo Embrionario , Células Endoteliales/metabolismo , Humanos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Mesodermo/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Esferoides Celulares/citología , Esferoides Celulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA