Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Methods Mol Biol ; 2620: 209-217, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37010764

RESUMEN

As global regulators of eukaryotic homeostasis, arginyltransferases (ATE1s) have essential functions within the cell. Thus, the regulation of ATE1 is paramount. It was previously postulated that ATE1 was a hemoprotein and that heme was an operative cofactor responsible for enzymatic regulation and inactivation. However, we have recently shown that ATE1 instead binds an iron-sulfur ([Fe-S]) cluster that appears to function as an oxygen sensor to regulate ATE1 activity. As this cofactor is oxygen-sensitive, purification of ATE1 in the presence of O2 results in cluster decomposition and loss. Here, we describe an anoxic chemical reconstitution protocol to assemble the [Fe-S] cluster cofactor in Saccharomyces cerevisiae ATE1 (ScATE1) and Mus musculus ATE1 isoform 1 (MmATE1-1).


Asunto(s)
Aminoaciltransferasas , Proteínas Hierro-Azufre , Ratones , Animales , Proteolisis , Isoformas de Proteínas/metabolismo , Aminoaciltransferasas/química , Saccharomyces cerevisiae/metabolismo , Proteínas Hierro-Azufre/metabolismo
2.
Nat Commun ; 14(1): 458, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709327

RESUMEN

Eukaryotic arginylation is an essential post-translational modification that modulates protein stability and regulates protein half-life. Arginylation is catalyzed by a family of enzymes known as the arginyl-tRNA transferases (ATE1s), which are conserved across the eukaryotic domain. Despite their conservation and importance, little is known regarding the structure, mechanism, and regulation of ATE1s. In this work, we show that ATE1s bind a previously undiscovered [Fe-S] cluster that is conserved across evolution. We characterize the nature of this [Fe-S] cluster and find that the presence of the [Fe-S] cluster in ATE1 is linked to its arginylation activity, both in vitro and in vivo, and the initiation of the yeast stress response. Importantly, the ATE1 [Fe-S] cluster is oxygen-sensitive, which could be a molecular mechanism of the N-degron pathway to sense oxidative stress. Taken together, our data provide the framework of a cluster-based paradigm of ATE1 regulatory control.


Asunto(s)
Aminoaciltransferasas , Proteínas Hierro-Azufre , Aminoaciltransferasas/genética , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Hierro-Azufre/genética
3.
J Biol Chem ; 298(4): 101808, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35271852

RESUMEN

Iron is an essential element for nearly all organisms, and under anoxic and/or reducing conditions, Fe2+ is the dominant form of iron available to bacteria. The ferrous iron transport (Feo) system is the primary prokaryotic Fe2+ import machinery, and two constituent proteins (FeoA and FeoB) are conserved across most bacterial species. However, how FeoA and FeoB function relative to one another remains enigmatic. In this work, we explored the distribution of feoAB operons encoding a fusion of FeoA tethered to the N-terminal, G-protein domain of FeoB via a connecting linker region. We hypothesized that this fusion poises FeoA to interact with FeoB to affect function. To test this hypothesis, we characterized the soluble NFeoAB fusion protein from Bacteroides fragilis, a commensal organism implicated in drug-resistant infections. Using X-ray crystallography, we determined the 1.50-Å resolution structure of BfFeoA, which adopts an SH3-like fold implicated in protein-protein interactions. Using a combination of structural modeling, small-angle X-ray scattering, and hydrogen-deuterium exchange mass spectrometry, we show that FeoA and NFeoB interact in a nucleotide-dependent manner, and we mapped the protein-protein interaction interface. Finally, using guanosine triphosphate (GTP) hydrolysis assays, we demonstrate that BfNFeoAB exhibits one of the slowest known rates of Feo-mediated GTP hydrolysis that is not potassium-stimulated. Importantly, truncation of FeoA from this fusion demonstrates that FeoA-NFeoB interactions function to stabilize the GTP-bound form of FeoB. Taken together, our work reveals a role for FeoA function in the fused FeoAB system and suggests a function for FeoA among prokaryotes.


Asunto(s)
Proteínas Bacterianas , Bacteroides fragilis , Proteínas de Transporte de Catión , Proteínas de Unión a Hierro , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Cristalografía por Rayos X , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólisis , Hierro/metabolismo , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/metabolismo , Estabilidad Proteica
4.
Biochemistry ; 60(44): 3277-3291, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34670078

RESUMEN

Iron is an essential nutrient for virtually every living organism, especially pathogenic prokaryotes. Despite its importance, however, both the acquisition and the export of this element require dedicated pathways that are dependent on oxidation state. Due to its solubility and kinetic lability, reduced ferrous iron (Fe2+) is useful to bacteria for import, chaperoning, and efflux. Once imported, ferrous iron may be loaded into apo and nascent enzymes and even sequestered into storage proteins under certain conditions. However, excess labile ferrous iron can impart toxicity as it may spuriously catalyze Fenton chemistry, thereby generating reactive oxygen species and leading to cellular damage. In response, it is becoming increasingly evident that bacteria have evolved Fe2+ efflux pumps to deal with conditions of ferrous iron excess and to prevent intracellular oxidative stress. In this work, we highlight recent structural and mechanistic advancements in our understanding of prokaryotic ferrous iron import and export systems, with a focus on the connection of these essential transport systems to pathogenesis. Given the connection of these pathways to the virulence of many increasingly antibiotic resistant bacterial strains, a greater understanding of the mechanistic details of ferrous iron cycling in pathogens could illuminate new pathways for future therapeutic developments.


Asunto(s)
Bacterias/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Antibacterianos/metabolismo , Transporte Biológico , Catálisis , Homeostasis , Transporte Iónico , Cinética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/fisiología , Oxidación-Reducción , Estrés Oxidativo , Células Procariotas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Solubilidad , Virulencia
5.
J Inorg Biochem ; 218: 111407, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33684686

RESUMEN

Iron is a necessary element for nearly all forms of life, and the ability to acquire this trace nutrient has been identified as a key virulence factor for the establishment of infection by unicellular pathogens. In the presence of O2, iron typically exists in the ferric (Fe3+) oxidation state, which is highly unstable in aqueous conditions, necessitating its sequestration into cofactors and/or host proteins to remain soluble. To counter this insolubility, and to compete with host sequestration mechanisms, many unicellular pathogens will secrete low molecular weight, high-affinity Fe3+ chelators known as siderophores. Once acquired, unicellular pathogens must liberate the siderophore-bound Fe3+ in order to assimilate this nutrient into metabolic pathways. While these organisms may hydrolyze the siderophore backbone to release the chelated Fe3+, this approach is energetically costly. Instead, iron may be liberated from the Fe3+-siderophore complex through reduction to Fe2+, which produces a lower-affinity form of iron that is highly soluble. This reduction is performed by a class of enzymes known as ferric reductases. Ferric reductases are broadly-distributed electron-transport proteins that are expressed by numerous infectious organisms and are connected to the virulence of unicellular pathogens. Despite this importance, ferric reductases remain poorly understood. This review provides an overview of our current understanding of unicellular ferric reductases (both soluble and membrane-bound), with an emphasis on the important but underappreciated connection between ferric-reductase mediated Fe3+ reduction and the transport of Fe2+ via ferrous iron transporters.


Asunto(s)
Eucariontes/metabolismo , FMN Reductasa/metabolismo , Compuestos Ferrosos/metabolismo , Transporte Biológico , Homeostasis , Oxidación-Reducción
6.
Biochemistry ; 58(49): 4935-4949, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31713418

RESUMEN

The acquisition of iron is essential to establishing virulence among most pathogens. Under acidic and/or anaerobic conditions, most bacteria utilize the widely distributed ferrous iron (Fe2+) uptake (Feo) system to import metabolically-required iron. The Feo system is inadequately understood at the atomic, molecular, and mechanistic levels, but we do know it is composed of a main membrane component (FeoB) essential for iron translocation, as well as two small, cytosolic proteins (FeoA and FeoC) hypothesized to function as accessories to this process. FeoC has many hypothetical functions, including that of an iron-responsive transcriptional regulator. Here, we demonstrate for the first time that Escherichia coli FeoC (EcFeoC) binds an [Fe-S] cluster. Using electronic absorption, X-ray absorption, and electron paramagnetic resonance spectroscopies, we extensively characterize the nature of this cluster. Under strictly anaerobic conditions after chemical reconstitution, we demonstrate that EcFeoC binds a redox-active [4Fe-4S]2+/+ cluster that is rapidly oxygen-sensitive and decays to a [2Fe-2S]2+ cluster (t1/2 ≈ 20 s), similar to the [Fe-S] cluster in the fumarate and nitrate reductase (FNR) transcriptional regulator. We further show that this behavior is nearly identical to the homologous K. pneumoniae FeoC, suggesting a redox-active, oxygen-sensitive [4Fe-4S]2+ cofactor is a general phenomenon of cluster-binding FeoCs. Finally, in contrast to FNR, we show that the [4Fe-4S]2+ cluster binding to FeoC is associated with modest conformational changes of the polypeptide, but not protein dimerization. We thus posit a working hypothesis in which the cluster-binding FeoCs may function as oxygen-sensitive iron sensors that fine-tune pathogenic ferrous iron acquisition.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/química , Oxígeno/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Dominio Catalítico , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Hierro/química , Hierro/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Cinética , Oxidación-Reducción , Oxígeno/química , Proteínas Represoras/genética , Azufre/química , Azufre/metabolismo
7.
Proteins ; 87(11): 897-903, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31162843

RESUMEN

In order to establish infection, pathogenic bacteria must obtain essential nutrients such as iron. Under acidic and/or anaerobic conditions, most bacteria utilize the Feo system in order to acquire ferrous iron (Fe2+ ) from their host environment. The mechanism of this process, including its regulation, remains poorly understood. In this work, we have determined the crystal structure of FeoA from the nosocomial agent Klebsiella pneumoniae (KpFeoA). Our structure reveals an SH3-like domain that mediates interactions between neighboring polypeptides via hydrophobic intercalations into a Leu-rich surface ridge. Using docking of a small peptide corresponding to a postulated FeoB partner binding site, we demonstrate that KpFeoA can assume both "open" and "closed" conformations, controlled by binding at this Leu-rich ridge. We propose a model in which a "C-shaped" clamp along the FeoA surface mediates interactions with its partner protein, FeoB. These findings are the first to demonstrate atomic-level details of FeoA-based protein-protein interactions and provide a framework for testing FeoA-FeoB interactions, which could be exploited for future antibiotic developments.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión a Hierro/química , Klebsiella pneumoniae/patogenicidad , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Proteínas de Unión a Hierro/metabolismo , Infecciones por Klebsiella/microbiología , Simulación del Acoplamiento Molecular , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas
8.
Metallomics ; 10(7): 887-898, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29953152

RESUMEN

Virtually all organisms require iron and have evolved to obtain this element in free or chelated forms. Under anaerobic or low pH conditions commonly encountered by numerous pathogens, iron predominantly exists in the ferrous (Fe2+) form. The ferrous iron transport (Feo) system is the only widespread mechanism dedicated solely to bacterial ferrous iron import, and this system has been linked to pathogenic virulence, bacterial colonization, and microbial survival. The canonical feo operon encodes for three proteins that comprise the Feo system: FeoA, a small cytoplasmic ß-barrel protein; FeoB, a large, polytopic membrane protein with a soluble G-protein domain capable of hydrolyzing GTP; and FeoC, a small, cytoplasmic protein containing a winged-helix motif. While previous studies have revealed insight into soluble and fragmentary domains of the Feo system, the chief membrane-bound component FeoB remains poorly studied. However, recent advances have demonstrated that large quantities of intact FeoB can be overexpressed, purified, and biophysically characterized, revealing glimpses into FeoB function. Two models of full-length FeoB have been published, providing starting points for hypothesis-driven investigations into the mechanism of FeoB-mediated ferrous iron transport. Finally, in vivo studies have begun to shed light on how this system functions as a unique multicomponent complex. In light of these new data, this review will summarize what is known about the Feo system, including recent advancements in FeoB structure and function.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Compuestos Ferrosos/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Virulencia , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Transporte Iónico , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Operón , Conformación Proteica
9.
Protein Expr Purif ; 142: 1-7, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28941825

RESUMEN

The acquisition of ferrous iron (Fe2+) is an important virulence factor utilized by several hospital-acquired (nosocomial) pathogens such as Klebsiella pneumoniae to establish infection within human hosts. Virtually all bacteria use the ferrous iron transport system (Feo) to acquire ferrous iron from their environments, which are often biological niches that stabilize Fe2+ relative to Fe3+. However, the details of this process remain poorly understood, likely owing to the few expression and purification systems capable of supplying sufficient quantities of the chief component of the Feo system, the integral membrane GTPase FeoB. This bottleneck has undoubtedly hampered efforts to understand this system in order to target it for therapeutic intervention. In this study, we describe the expression, solubilization, and purification of the Fe2+ transporter from K. pneumoniae, KpFeoB. We show that this protein may be heterologously overexpressed in Escherichia coli as the host organism. After testing several different commercially-available detergents, we have developed a solubilization and purification protocol that produces milligram quantities of KpFeoB with sufficient purity for enzymatic and biophysical analyses. Importantly, we demonstrate that KpFeoB displays robust GTP hydrolysis activity (kcatGTP of ∼10-1 s-1) in the absence of any additional stimulatory factors. Our findings suggest that K. pneumoniae may be capable of using its Feo system to drive Fe2+ import in an active manner.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Transporte de Catión/genética , Guanosina Trifosfato/metabolismo , Hierro/metabolismo , Klebsiella pneumoniae/química , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/aislamiento & purificación , Proteínas de Transporte de Catión/metabolismo , Cationes Bivalentes , Clonación Molecular , Detergentes/química , Pruebas de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Hidrólisis , Transporte Iónico , Cinética , Klebsiella pneumoniae/enzimología , Maltosa/análogos & derivados , Maltosa/química , Plásmidos/química , Plásmidos/metabolismo , Polietilenglicoles/química , Conformación Proteica en Hélice alfa , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Solubilidad
10.
Biochemistry ; 56(1): 85-95, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-28001366

RESUMEN

The P1B-ATPases, a family of transmembrane metal transporters important for transition metal homeostasis in all organisms, are subdivided into classes based on sequence conservation and metal specificity. The multifunctional P1B-4-ATPase CzcP is part of the cobalt, zinc, and cadmium resistance system from the metal-tolerant, model organism Cupriavidus metallidurans. Previous work revealed the presence of an unusual soluble metal-binding domain (MBD) at the CzcP N-terminus, but the nature, extent, and selectivity of the transmembrane metal-binding site (MBS) of CzcP have not been resolved. Using homology modeling, we show that four wholly conserved amino acids from the transmembrane (TM) domain (Met254, Ser474, Cys476, and His807) are logical candidates for the TM MBS, which may communicate with the MBD via interactions with the first TM helix. Metal-binding analyses indicate that wild-type (WT) CzcP has three MBSs, and data on N-terminally truncated (ΔMBD) CzcP suggest the presence of a single TM MBS. Electronic absorption and electron paramagnetic resonance spectroscopic analyses of ΔMBD CzcP and variant proteins thereof provide insight into the details of Co2+ coordination by the TM MBS. These spectroscopic data, combined with in vitro functional studies of WT and variant CzcP proteins, show that the side chains of Met254, Cys476, and His807 contribute to Cd2+, Co2+, and Zn2+ binding and transport, whereas the side chain of Ser474 appears to play a minimal role. By comparison to other P1B-4-ATPases, we suggest that an evolutionarily adapted flexibility in the TM region likely afforded CzcP the ability to transport Cd2+ and Zn2+ in addition to Co2+.


Asunto(s)
Adenosina Trifosfatasas/química , Cadmio/química , Proteínas de Transporte de Catión/química , Cobalto/química , Zinc/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Transporte Biológico , Cadmio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Cobalto/metabolismo , Cupriavidus/genética , Cupriavidus/metabolismo , Electroforesis en Gel de Poliacrilamida , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Espectrofotometría , Zinc/metabolismo
11.
J Biol Inorg Chem ; 21(8): 1021-1035, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27766492

RESUMEN

The RNA-binding heme protein DiGeorge critical region 8 (DGCR8) and its ribonuclease partner Drosha cleave primary transcripts of microRNA (pri-miRNA) as part of the canonical microRNA (miRNA) processing pathway. Previous studies show that bis-cysteine thiolate-coordinated Fe(III) DGCR8 supports pri-miRNA processing activity, while Fe(II) DGCR8 does not. In this study, we further characterized Fe(II) DGCR8 and tested whether CO or NO might bind and restore pri-miRNA processing activity to the reduced protein. Fe(II) DGCR8 RNA-binding heme domain (Rhed) undergoes a pH-dependent transition from 6-coordinate to 5-coordinate, due to protonation and loss of a lysine ligand; the ligand bound throughout the pH change is a histidine. Fe(II) Rhed binds CO and NO from 6- and 5-coordinate states, forming common CO and NO adducts at all pHs. Fe(II)-CO Rhed is 6-coordinate, low-spin, and pH insensitive with the histidine ligand retained, suggesting that the protonatable lysine ligand has been replaced by CO. Fe(II)-NO Rhed is 5-coordinate and pH insensitive. Fe(II)-NO also forms slowly upon reaction of Fe(III) Rhed with excess NO via a stepwise process. Heme reduction by NO is rate-limiting, and the rate would be negligible at physiological NO concentrations. Importantly, in vitro pri-miRNA processing assays show that both CO- and NO-bound DGCR8 species are inactive. Fe(II), Fe(II)-CO, and Fe(II)-NO Rhed do not bear either of the cysteine ligands found in the Fe(III) state. These data support a model in which the bis-cysteine thiolate ligand environment of Fe(III) DGCR8 is necessary for establishing proper pri-miRNA binding and enabling processing activity.


Asunto(s)
Monóxido de Carbono/metabolismo , Compuestos Ferrosos/metabolismo , Hemo/metabolismo , MicroARNs/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Unión al ARN/metabolismo , Sitios de Unión , Dicroismo Circular/métodos , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Compuestos Ferrosos/química , Hemo/química , Histidina/química , Histidina/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Lisina/química , Lisina/metabolismo , MicroARNs/genética , Modelos Biológicos , Unión Proteica , Proteínas de Unión al ARN/química , Espectrometría Raman
12.
Nat Chem Biol ; 11(9): 678-84, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26192600

RESUMEN

The P1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P1B-ATPases is the presence of soluble metal binding domains (MBDs) that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in nature. Here we report the biochemical, structural and functional characterization of a new MBD from the Cupriavidus metallidurans P1B-4-ATPase CzcP (CzcP MBD). The CzcP MBD binds two Cd(2+), Co(2+) or Zn(2+) ions in distinct and unique sites and adopts an unexpected fold consisting of two fused ferredoxin-like domains. Both in vitro and in vivo activity assays using full-length CzcP, truncated CzcP and several variants indicate a regulatory role for the MBD and distinct functions for the two metal binding sites. Taken together, these findings elucidate a previously unknown MBD and suggest new regulatory mechanisms for metal transport by P1B-ATPases.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Cadmio/química , Proteínas de Transporte de Catión/química , Cobalto/química , Cupriavidus/enzimología , Zinc/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cadmio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Cobalto/metabolismo , Cupriavidus/química , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxinas/química , Expresión Génica , Cinética , Simulación de Dinámica Molecular , Sistemas de Lectura Abierta , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Zinc/metabolismo
13.
J Biol Inorg Chem ; 19(6): 947-60, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24729073

RESUMEN

The P1B-ATPases are integral membrane proteins that couple ATP hydrolysis to metal cation transport. Widely distributed across all domains of life, these enzymes have been previously shown to transport copper, zinc, cobalt, and other thiophilic heavy metals. Recent data suggest that these enzymes may also be involved in nickel and/or iron transport. Here we have exploited large amounts of genomic data to examine and classify the various P1B-ATPase subfamilies. Specifically, we have combined new methods of data partitioning and network visualization known as Transitivity Clustering and Protein Similarity Networks with existing biochemical data to examine properties such as length, speciation, and metal-binding motifs of the P1B-ATPase subfamily sequences. These data reveal interesting relationships among the enzyme sequences of previously established subfamilies, indicate the presence of two new subfamilies, and suggest the existence of new regulatory elements in certain subfamilies. Taken together, these findings underscore the importance of P1B-ATPases in homeostasis of nearly every biologically relevant transition metal and provide an updated framework for future studies.


Asunto(s)
Adenosina Trifosfatasas/clasificación , Adenosina Trifosfatasas/metabolismo , Metales Pesados/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Transporte Biológico , Bases de Datos de Proteínas , Modelos Moleculares
14.
Biol Blood Marrow Transplant ; 19(11): 1557-65, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23921175

RESUMEN

Regulatory T cell (Treg) immunotherapy is a promising strategy for the treatment of graft rejection responses and autoimmune disorders. Our and other laboratories have shown that the transfer of highly purified CD4(+)CD25(+)Foxp3(+) natural Treg can prevent lethal graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation across both major and minor histocompatibility barriers. However, recent evidence suggests that the Treg suppressive phenotype can become unstable, a phenomenon that can culminate in Treg conversion into IL-17-producing cells. We hypothesized that the intense proinflammatory signals released during an ongoing alloreaction might redirect a fraction of the transferred Treg to the Th17 cell fate, thereby losing immunosuppressive potential. We therefore sought to evaluate the impact of Il17 gene ablation on Treg stability and immunosuppressive capacity in a major MHC mismatch model. We show that although Il17 gene ablation results in a mildly enhanced Treg immunosuppressive ability in vitro, such improvement is not observed when IL-17-deficient Treg are used for GVHD suppression in vivo. Similarly, when we selectively blocked IL-1 signaling in Treg, that was shown to be necessary for Th17 conversion, we did not detect any improvement on Treg-mediated GVHD suppressive ability in vivo. Furthermore, upon ex vivo reisolation of transferred wild-type Treg, we detected little or no Treg-mediated IL-17 production upon GVHD induction. Our results indicate that blocking Th17 conversion does not affect the GVHD suppressive ability of highly purified natural Treg in vivo, suggesting that IL-17 targeting is not a valuable strategy to improve Treg immunotherapy after hematopoietic cell transplantation.


Asunto(s)
Trasplante de Médula Ósea/métodos , Enfermedad Injerto contra Huésped/inmunología , Inmunoterapia Adoptiva/métodos , Interleucina-17/genética , Linfocitos T Reguladores/trasplante , Animales , Enfermedad Injerto contra Huésped/genética , Humanos , Interleucina-17/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T Reguladores/inmunología , Células Th17/inmunología
15.
J Biol Inorg Chem ; 17(7): 1071-82, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22855237

RESUMEN

The CO-responsive transcriptional regulator RcoM from Burkholderia xenovorans (BxRcoM) was recently identified as a Cys(thiolate)-ligated heme protein that undergoes a redox-mediated ligand switch; however, the Cys bound to the Fe(III) heme was not identified. To that end, we generated and purified three Cys-to-Ser variants of BxRcoM-2--C94S, C127S, and C130S--and examined their spectroscopic properties in order to identify the native Cys(thiolate) ligand. Electronic absorption, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopies demonstrate that the C127S and C130S variants, like wild-type BxRcoM-2, bind a six-coordinate low-spin Fe(III) heme using a Cys/His ligation motif. In contrast, electronic absorption and resonance Raman spectra of the C94S variant are most consistent with a mixture of five-coordinate high-spin and six-coordinate low-spin Fe(III) heme, neither of which are ligated by a Cys(thiolate) ligand. The EPR spectrum of C94S is dominated by a large, axial high-spin Fe(III) signal, confirming that the native ligation motif is not maintained in this variant. Together, these data reveal that Cys(94) is the distal Fe(III) heme ligand in BxRcoM-2; by sequence alignment, Cys(94) is also implicated as the distal Fe(III) heme ligand in BxRcoM-1, another homologue found in the same organism.


Asunto(s)
Burkholderia/química , Cisteína/química , Hemoproteínas/química , Elementos Reguladores de la Transcripción/genética , Secuencia de Aminoácidos , Burkholderia/genética , Cisteína/genética , Variación Genética , Hemoproteínas/genética , Ligandos , Datos de Secuencia Molecular , Estructura Molecular , Alineación de Secuencia , Espectrometría Raman
16.
Biochemistry ; 51(32): 6360-70, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22738154

RESUMEN

Cystathionine ß-synthase (CBS) is an essential pyridoxal 5'-phosphate (PLP)-dependent enzyme of the transsulfuration pathway that condenses serine with homocysteine to form cystathionine; intriguingly, human CBS also contains a heme b cofactor of unknown function. Herein we describe the enzymatic and spectroscopic properties of a disease-associated R266K hCBS variant, which has an altered hydrogen-bonding environment. The R266K hCBS contains a low-spin, six-coordinate Fe(III) heme bearing a His/Cys ligation motif, like that of WT hCBS; however, there is a geometric distortion that exists at the R266K heme. Using rR spectroscopy, we show that the Fe(III)-Cys(thiolate) bond is longer and weaker in R266K, as evidenced by an 8 cm(-1) downshift in the ν(Fe-S) resonance. Presence of this longer and weaker Fe(III)-Cys(thiolate) bond is correlated with alteration of the fluorescence spectrum of the active PLP ketoenamine tautomer. Activity data demonstrate that, relative to WT, the R266K variant is more impaired in the alternative cysteine-synthesis reaction than in the canonical cystathionine-synthesis reaction. This diminished cysteine synthesis activity and a greater sensitivity to exogenous PLP correlate with the change in PLP environment. Fe-S(Cys) bond weakening causes a nearly 300-fold increase in the rate of ligand switching upon reduction of the R266K heme. Combined, these data demonstrate cross talk between the heme and PLP active sites, consistent with previous proposals, revealing that alteration of the Arg(266)-Cys(52) interaction affects PLP-dependent activity and dramatically destabilizes the ferrous thiolate-ligated heme complex, underscoring the importance of this hydrogen-bonding residue pair.


Asunto(s)
Cistationina betasintasa/química , Hemo/genética , Fosfato de Piridoxal/química , Dominio Catalítico , Dicroismo Circular , Cistationina betasintasa/genética , Espectroscopía de Resonancia por Spin del Electrón , Estabilidad de Enzimas , Compuestos Ferrosos/química , Homocistinuria/genética , Humanos , Modelos Moleculares , Mutación , Oxidación-Reducción , Unión Proteica , Espectrometría de Fluorescencia , Espectrometría Raman , Temperatura
17.
Blood ; 119(24): 5758-68, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22544698

RESUMEN

Natural killer (NK) cells are potent anti-viral and antitumor "first responders" endowed with natural cytotoxicity and cytokine production capabilities. To date, attempts to translate these promising biologic functions through the adoptive transfer of NK cells for the treatment of cancer have been of limited benefit. Here we trace the fate of adoptively transferred murine NK cells and make the surprising observation that NK cells traffic to tumor sites yet fail to control tumor growth or improve survival. This dysfunction is related to a rapid down-regulation of activating receptor expression and loss of important effector functions. Loss of interferon (IFN)γ production occurs early after transfer, whereas loss of cytotoxicity progresses with homeostatic proliferation and tumor exposure. The dysfunctional phenotype is accompanied by down-regulation of the transcription factors Eomesodermin and T-bet, and can be partially reversed by the forced overexpression of Eomesodermin. These results provide the first demonstration of NK-cell exhaustion and suggest that the NK-cell first-response capability is intrinsically limited. Further, novel approaches may be required to circumvent the described dysfunctional phenotype.


Asunto(s)
Traslado Adoptivo , Antineoplásicos/inmunología , Regulación hacia Abajo , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Proteínas de Dominio T Box/metabolismo , Animales , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Movimiento Celular , Proliferación Celular , Homeostasis , Humanos , Células Asesinas Naturales/citología , Depleción Linfocítica , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores Inmunológicos/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología
18.
Proc Natl Acad Sci U S A ; 109(6): 1919-24, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22308374

RESUMEN

The RNA-binding protein DiGeorge Critical Region 8 (DGCR8) and its partner nuclease Drosha are essential for processing of microRNA (miRNA) primary transcripts (pri-miRNAs) in animals. Previous work showed that DGCR8 forms a highly stable and active complex with ferric [Fe(III)] heme using two endogenous cysteines as axial ligands. Here we report that reduction of the heme iron to the ferrous [Fe(II)] state in DGCR8 abolishes the pri-miRNA processing activity. The reduction causes a dramatic increase in the rate of heme dissociation from DGCR8, rendering the complex labile. Electronic absorption, magnetic circular dichroism, and resonance Raman spectroscopies indicate that reduction of the heme iron is accompanied by loss of the cysteines as axial ligands. ApoDGCR8 dimers, generated through reduction and removal of the heme, show low levels of activity in pri-miRNA processing in vitro. Importantly, ferric, but not ferrous, heme restores the activity of apoDGCR8 to the level of the native ferric complex. This study demonstrates binding specificity of DGCR8 for ferric heme, provides direct biochemical evidence for ferric heme serving as an activator for miRNA maturation, and suggests that an intracellular environment increasing the availability of ferric heme may enhance the efficiency of pri-miRNA processing.


Asunto(s)
Compuestos Férricos/metabolismo , Compuestos Ferrosos/metabolismo , Hemo/metabolismo , MicroARNs/metabolismo , Proteínas/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , Animales , Apoproteínas/metabolismo , Humanos , Ligandos , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína
19.
Blood ; 118(8): 2342-50, 2011 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-21734238

RESUMEN

Previous work has demonstrated that both rapamycin (RAPA) and IL-2 enhance CD4⁺CD25⁺Foxp3⁺ regulatory T-cell (Treg) proliferation and function in vitro. We investigated whether the combination of RAPA plus IL-2 could impact acute GVHD induction after bone marrow transplantation (BMT). RAPA plus IL-2 resulted in improved survival and a reduction in acute GVHD lethality associated with an increased expansion of donor type CD4⁺Foxp3⁺ Tregs and reduced CD4⁺CD25⁻ conventional T cells (Tcons). RAPA plus IL-2, but not either drug alone, increased both expansion of donor natural Tregs and conversion of induced Tregs from donor CD25⁻ Tcons while IL-2 alone increased conversion of Tregs from CD25⁻ Tcon. RAPA plus IL-2 treatment resulted in less production of IFN-γ and TNF, cytokines known to be important in the initiation of acute GVHD. These studies indicate that the pharmacologic stimulation of T cells with IL-2 and the suppression of Tcon proliferation with RAPA result in a selective expansion of functional Tregs and suppression of acute GVHD.


Asunto(s)
Enfermedad Injerto contra Huésped/prevención & control , Interleucina-2/farmacología , Sirolimus/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Enfermedad Aguda , Animales , Trasplante de Médula Ósea/efectos adversos , Trasplante de Médula Ósea/inmunología , Femenino , Factores de Transcripción Forkhead/metabolismo , Enfermedad Injerto contra Huésped/inmunología , Interferón gamma/biosíntesis , Interleucina-2/administración & dosificación , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Sirolimus/administración & dosificación , Subgrupos de Linfocitos T/clasificación , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/clasificación , Trasplante Homólogo , Factor de Necrosis Tumoral alfa/biosíntesis
20.
J Biol Chem ; 286(19): 16716-25, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21454614

RESUMEN

All known heme-thiolate proteins ligate the heme iron using one cysteine side chain. We previously found that DiGeorge Critical Region 8 (DGCR8), an essential microRNA processing factor, associates with heme of unknown redox state when overexpressed in Escherichia coli. On the basis of the similarity of the 450-nm Soret absorption peak of the DGCR8-heme complex to that of cytochrome P450 containing ferrous heme with CO bound, we identified cysteine 352 as a probable axial ligand in DGCR8. Here we further characterize the DGCR8-heme interaction using biochemical and spectroscopic methods. The DGCR8-heme complex is highly stable, with a half-life exceeding 4 days. Mutation of the conserved proline 351 to an alanine increases the rate of heme dissociation and allows the DGCR8-heme complex to be reconstituted biochemically. Surprisingly, DGCR8 binds ferric heme without CO to generate a hyperporphyrin spectrum. The electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance spectra of the DGCR8-heme complex suggest a ferric heme bearing two cysteine ligands. This model was further confirmed using selenomethionine-substituted DGCR8 and mercury titration. DGCR8 is the first example of a heme-binding protein with two endogenous cysteine side chains serving as axial ligands. We further show that native DGCR8 binds heme when expressed in eukaryotic cells. This study provides a chemical basis for understanding the function of the DGCR8-heme interaction in microRNA maturation.


Asunto(s)
Cisteína/química , Hemo/química , Proteínas/genética , Proteínas/fisiología , Animales , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Caballos , Humanos , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Porfirinas/química , Prolina/química , Proteínas de Unión al ARN , Selenometionina/química , Espectrofotometría/métodos , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA