Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Allergy Clin Immunol ; 150(4): 920-930, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35738928

RESUMEN

BACKGROUND: Worldwide, pollen of the weed mugwort (Artemisiavulgaris) is a major cause of severe respiratory allergy, with its major allergen, Art v 1, being the key pathogenic molecule for millions of patients. Humanized mice transgenic for a human T-cell receptor specific for the major Art v 1 T-cell epitope and the corresponding HLA have been made. OBJECTIVE: We sought to characterize IgE epitopes of Art v 1-sensitized patients and humanized mice for molecular immunotherapy of mugwort allergy. METHODS: Four overlapping peptides incorporating surface-exposed amino acids representing the full-length Art v 1 sequence were synthesized and used to search for IgE reactivity to sequential epitopes. For indirect mapping, peptide-specific rabbit antibodies were raised to block IgE against surface-exposed epitopes on folded Art v 1. IgE reactivity and basophil activation studies were performed in clinically defined mugwort-allergic patients. Secondary structure of recombinant (r) Art v 1 and peptides was determined by circular dichroism spectroscopy. RESULTS: Mugwort-allergic patients and humanized mice sensitized by allergen inhalation showed IgE reactivity and/or basophil activation mainly to folded, complete Art v 1 but not to unfolded, sequential peptide epitopes. Blocking of allergic patients' IgE with peptide-specific rabbit antisera identified a hitherto unknown major conformational IgE binding site in the C-terminal Art v 1 domain. CONCLUSIONS: Identification of the new major conformational IgE binding site on Art v 1, which can be blocked with IgG raised against non-IgE reactive Art v 1 peptides, is an important basis for the development of a hypoallergenic peptide vaccine for mugwort allergy.


Asunto(s)
Artemisia , Hipersensibilidad , Alérgenos , Aminoácidos , Animales , Antígenos de Plantas , Artemisia/química , Epítopos de Linfocito T , Humanos , Sueros Inmunes , Inmunoglobulina E , Inmunoglobulina G , Ratones , Péptidos , Proteínas de Plantas , Conejos
2.
J Allergy Clin Immunol ; 149(4): 1413-1427.e2, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34506849

RESUMEN

BACKGROUND: The most common endotype of asthma is type 2-high asthma, which is sometimes driven by adaptive allergen-specific TH2 lymphocytes that react to allergens presented by dendritic cells (DCs), or sometimes by an innate immune response dominated by type 2 innate lymphocytes (ILC2s). Understanding the underlying pathophysiology of asthma is essential to improve patient-tailored therapy. The STE20 kinase thousand-and-one kinase 3 (TAOK3) controls key features in the biology of DCs and lymphocytes, but to our knowledge, its potential usefulness as a target for asthma therapy has not yet been addressed. OBJECTIVE: We examined if and how loss of Taok3 affects the development of house dust mite (HDM)-driven allergic asthma in an in vivo mouse model. METHODS: Wild-type Taok3+/+ and gene-deficient Taok3-/- mice were sensitized and challenged with HDM, and bronchoalveolar lavage fluid composition, mediastinal lymph node cytokine production, lung histology, and bronchial hyperreactivity measured. Conditional Taok3fl/fl mice were crossed to tissue- and cell-specific specific deletor Cre mice to understand how Taok3 acted on asthma susceptibility. Kinase-dead (KD) Taok3KD mice were generated to probe for the druggability of this pathway. Activation of HDM-specific T cells was measured in adoptively transferred HDM-specific T-cell receptor-transgenic CD4+ T cells. ILC2 biology was assessed by in vivo and in vitro IL-33 stimulation assays in Taok3-/- and Taok3+/+, Taok3KD, and Red5-Cre Taok3fl/fl mice. RESULTS: Taok3-/- mice failed to mount salient features of asthma, including airway eosinophilia, TH2 cytokine production, IgE secretion, airway goblet cell metaplasia, and bronchial hyperreactivity compared to controls. This was due to intrinsic loss of Taok3 in hematopoietic and not epithelial cells. Loss of Taok3 resulted in hampered HDM-induced lung DC migration to the draining lymph nodes and defective priming of HDM-specific TH2 cells. Strikingly, HDM and IL-33-induced ILC2 proliferation and function were also severely affected in Taok3-deficient and Taok3KD mice. CONCLUSIONS: Absence of Taok3 or loss of its kinase activity protects from HDM-driven allergic asthma as a result of defects in both adaptive DC-mediated TH2 activation and innate ILC2 function. This identifies Taok3 as an interesting drug target, justifying further testing as a new treatment for type 2-high asthma.


Asunto(s)
Asma , Hiperreactividad Bronquial , Alérgenos , Animales , Hiperreactividad Bronquial/patología , Citocinas , Dermatophagoides pteronyssinus , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Interleucina-33 , Pulmón , Linfocitos , Ratones , Proteínas Serina-Treonina Quinasas , Pyroglyphidae , Células Th2
3.
Lancet Respir Med ; 9(12): 1427-1438, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34756178

RESUMEN

BACKGROUND: Infections with SARS-CoV-2 continue to cause significant morbidity and mortality. Interleukin (IL)-1 and IL-6 blockade have been proposed as therapeutic strategies in COVID-19, but study outcomes have been conflicting. We sought to study whether blockade of the IL-6 or IL-1 pathway shortened the time to clinical improvement in patients with COVID-19, hypoxic respiratory failure, and signs of systemic cytokine release syndrome. METHODS: We did a prospective, multicentre, open-label, randomised, controlled trial, in hospitalised patients with COVID-19, hypoxia, and signs of a cytokine release syndrome across 16 hospitals in Belgium. Eligible patients had a proven diagnosis of COVID-19 with symptoms between 6 and 16 days, a ratio of the partial pressure of oxygen to the fraction of inspired oxygen (PaO2:FiO2) of less than 350 mm Hg on room air or less than 280 mm Hg on supplemental oxygen, and signs of a cytokine release syndrome in their serum (either a single ferritin measurement of more than 2000 µg/L and immediately requiring high flow oxygen or mechanical ventilation, or a ferritin concentration of more than 1000 µg/L, which had been increasing over the previous 24 h, or lymphopenia below 800/mL with two of the following criteria: an increasing ferritin concentration of more than 700 µg/L, an increasing lactate dehydrogenase concentration of more than 300 international units per L, an increasing C-reactive protein concentration of more than 70 mg/L, or an increasing D-dimers concentration of more than 1000 ng/mL). The COV-AID trial has a 2 × 2 factorial design to evaluate IL-1 blockade versus no IL-1 blockade and IL-6 blockade versus no IL-6 blockade. Patients were randomly assigned by means of permuted block randomisation with varying block size and stratification by centre. In a first randomisation, patients were assigned to receive subcutaneous anakinra once daily (100 mg) for 28 days or until discharge, or to receive no IL-1 blockade (1:2). In a second randomisation step, patients were allocated to receive a single dose of siltuximab (11 mg/kg) intravenously, or a single dose of tocilizumab (8 mg/kg) intravenously, or to receive no IL-6 blockade (1:1:1). The primary outcome was the time to clinical improvement, defined as time from randomisation to an increase of at least two points on a 6-category ordinal scale or to discharge from hospital alive. The primary and supportive efficacy endpoints were assessed in the intention-to-treat population. Safety was assessed in the safety population. This study is registered online with ClinicalTrials.gov (NCT04330638) and EudraCT (2020-001500-41) and is complete. FINDINGS: Between April 4, and Dec 6, 2020, 342 patients were randomly assigned to IL-1 blockade (n=112) or no IL-1 blockade (n=230) and simultaneously randomly assigned to IL-6 blockade (n=227; 114 for tocilizumab and 113 for siltuximab) or no IL-6 blockade (n=115). Most patients were male (265 [77%] of 342), median age was 65 years (IQR 54-73), and median Systematic Organ Failure Assessment (SOFA) score at randomisation was 3 (2-4). All 342 patients were included in the primary intention-to-treat analysis. The estimated median time to clinical improvement was 12 days (95% CI 10-16) in the IL-1 blockade group versus 12 days (10-15) in the no IL-1 blockade group (hazard ratio [HR] 0·94 [95% CI 0·73-1·21]). For the IL-6 blockade group, the estimated median time to clinical improvement was 11 days (95% CI 10-16) versus 12 days (11-16) in the no IL-6 blockade group (HR 1·00 [0·78-1·29]). 55 patients died during the study, but no evidence for differences in mortality between treatment groups was found. The incidence of serious adverse events and serious infections was similar across study groups. INTERPRETATION: Drugs targeting IL-1 or IL-6 did not shorten the time to clinical improvement in this sample of patients with COVID-19, hypoxic respiratory failure, low SOFA score, and low baseline mortality risk. FUNDING: Belgian Health Care Knowledge Center and VIB Grand Challenges program.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Síndrome de Liberación de Citoquinas , Insuficiencia Respiratoria , Anciano , Bélgica , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/virología , Femenino , Ferritinas , Humanos , Hipoxia , Interleucina-1/antagonistas & inhibidores , Interleucina-6/antagonistas & inhibidores , Masculino , Persona de Mediana Edad , Oxígeno , Estudios Prospectivos , Insuficiencia Respiratoria/tratamiento farmacológico , Insuficiencia Respiratoria/virología , SARS-CoV-2 , Resultado del Tratamiento
4.
FASEB J ; 35(4): e21217, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33715236

RESUMEN

The importance of cellular metabolic adaptation in inducing robust T cell responses is well established. However, the mechanism by which T cells link information regarding nutrient supply to clonal expansion and effector function is still enigmatic. Herein, we report that the metabolic sensor adenosine monophosphate-activated protein kinase (AMPK) is a critical link between cellular energy demand and translational activity and, thus, orchestrates optimal expansion of T cells in vivo. AMPK deficiency did not affect T cell fate decision, activation, or T effector cell generation; however, the magnitude of T cell responses in murine in vivo models of T cell activation was markedly reduced. This impairment was global, as all T helper cell subsets were similarly sensitive to loss of AMPK which resulted in reduced T cell accumulation in peripheral organs and reduced disease severity in pathophysiologically as diverse models as T cell transfer colitis and allergic airway inflammation. T cell receptor repertoire analysis confirmed similar clonotype frequencies in different lymphoid organs, thereby supporting the concept of a quantitative impairment in clonal expansion rather than a skewed qualitative immune response. In line with these findings, in-depth metabolic analysis revealed a decrease in T cell oxidative metabolism, and gene set enrichment analysis indicated a major reduction in ribosomal biogenesis and mRNA translation in AMPK-deficient T cells. We, thus, provide evidence that through its interference with these delicate processes, AMPK orchestrates the quantitative, but not the qualitative, manifestation of primary T cell responses in vivo.


Asunto(s)
Adenilato Quinasa/metabolismo , Linfocitos T Colaboradores-Inductores/fisiología , Linfocitos T Reguladores/fisiología , Adaptación Fisiológica , Adenilato Quinasa/genética , Traslado Adoptivo , Animales , Linfocitos T CD4-Positivos , Colitis/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Enzimológica de la Expresión Génica , Activación de Linfocitos , Ratones , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células TH1/fisiología , Células Th17/fisiología
5.
Nat Immunol ; 21(7): 756-765, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32572240

RESUMEN

The molecular basis for the propensity of a small number of environmental proteins to provoke allergic responses is largely unknown. Herein, we report that mite group 13 allergens of the fatty acid-binding protein (FABP) family are sensed by an evolutionarily conserved acute-phase protein, serum amyloid A1 (SAA1), that promotes pulmonary type 2 immunity. Mechanistically, SAA1 interacted directly with allergenic mite FABPs (Der p 13 and Blo t 13). The interaction between mite FABPs and SAA1 activated the SAA1-binding receptor, formyl peptide receptor 2 (FPR2), which drove the epithelial release of the type-2-promoting cytokine interleukin (IL)-33 in a SAA1-dependent manner. Importantly, the SAA1-FPR2-IL-33 axis was upregulated in nasal epithelial cells from patients with chronic rhinosinusitis. These findings identify an unrecognized role for SAA1 as a soluble pattern recognition receptor for conserved FABPs found in common mite allergens that initiate type 2 immunity at mucosal surfaces.


Asunto(s)
Asma/inmunología , Rinitis Alérgica/inmunología , Proteína Amiloide A Sérica/metabolismo , Transducción de Señal/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alérgenos/inmunología , Animales , Antígenos Dermatofagoides/inmunología , Asma/patología , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales , Proteínas de Unión a Ácidos Grasos/inmunología , Femenino , Humanos , Inmunidad Humoral , Inmunidad Innata , Interleucina-33/metabolismo , Pulmón/citología , Pulmón/inmunología , Pulmón/patología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Cultivo Primario de Células , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Rinitis Alérgica/patología , Proteína Amiloide A Sérica/genética , Regulación hacia Arriba , Adulto Joven
6.
Eur J Immunol ; 50(5): 624-642, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32246830

RESUMEN

Maintenance of homeostasis at body barriers that are constantly challenged by microbes, toxins and potentially bioactive (macro)molecules requires complex, highly orchestrated mechanisms of protection. Recent discoveries in respiratory research have shed light on the unprecedented role of airway epithelial cells (AEC), which, besides immune cells homing to the lung, also significantly contribute to host defence by expressing membrane-bound and soluble pattern recognition receptors (sPRR). Recent evidence suggests that distinct, evolutionary ancient, sPRR secreted by AEC might become activated by usually innocuous proteins, commonly referred to as allergens. We here provide a systematic overview on sPRR detectable in the mucus lining of AEC. Some of them become actively produced and secreted by AECs (like the pentraxins C-reactive protein and pentraxin 3; the collectins mannose binding protein and surfactant proteins A and D; H-ficolin; serum amyloid A; and the complement components C3 and C5). Others are elaborated by innate and adaptive immune cells such as monocytes/macrophages and T cells (like the pentraxins C-reactive protein and pentraxin 3; L-ficolin; serum amyloid A; and the complement components C3 and C5). Herein we discuss how sPRRs may contribute to homeostasis but sometimes also to overt disease (e.g. airway hyperreactivity and asthma) at the alveolar-air interface.


Asunto(s)
Asma/inmunología , Hiperreactividad Bronquial/inmunología , Proteína C-Reactiva/inmunología , Homeostasis/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Mucosa Respiratoria/inmunología , Alérgenos/administración & dosificación , Animales , Asma/genética , Asma/patología , Hiperreactividad Bronquial/genética , Hiperreactividad Bronquial/patología , Proteína C-Reactiva/genética , Colectinas/genética , Colectinas/inmunología , Complemento C3/genética , Complemento C3/inmunología , Complemento C5/genética , Complemento C5/inmunología , Células Epiteliales/inmunología , Células Epiteliales/patología , Regulación de la Expresión Génica , Homeostasis/genética , Humanos , Lectinas/genética , Lectinas/inmunología , Receptores de Reconocimiento de Patrones/genética , Mucosa Respiratoria/patología , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/inmunología , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/inmunología
7.
Allergy ; 74(2): 246-260, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30035810

RESUMEN

BACKGROUND: In high-risk populations, allergen-specific prophylaxis could protect from sensitization and subsequent development of allergic disease. However, such treatment might itself induce sensitization and allergies, thus requiring hypoallergenic vaccine formulations. We here characterized the preventive potential of virus-like nanoparticles (VNP) expressing surface-exposed or shielded allergens. METHODS: Full-length major mugwort pollen allergen Art v 1 was selectively targeted either to the surface or to the inner side of the lipid bilayer envelope of VNP. Upon biochemical and immunological analysis, their preventive potential was determined in a humanized mouse model of mugwort pollen allergy. RESULTS: Virus-like nanoparticles expressing shielded version of Art v 1, in contrast to those expressing surface-exposed Art v 1, were hypoallergenic as they hardly induced degranulation of rat basophil leukemia cells sensitized with Art v 1-specific mouse or human IgE. Both VNP versions induced proliferation and cytokine production of allergen-specific T cells in vitro. Upon intranasal application in mice, VNP expressing surface-exposed but not shielded allergen induced allergen-specific antibodies, including IgE. Notably, preventive treatment with VNP expressing shielded allergen-protected mice from subsequent sensitization with mugwort pollen extract. Protection was associated with a Th1/Treg-dominated cytokine response, increased Foxp3+ Treg numbers in lungs, and reduced lung resistance when compared to mice treated with empty particles. CONCLUSION: Virus-like nanoparticles represent a novel and versatile platform for the in vivo delivery of allergens to selectively target T cells and prevent allergies without inducing allergic reactions or allergic sensitization.


Asunto(s)
Alérgenos/inmunología , Hipersensibilidad/inmunología , Hipersensibilidad/prevención & control , Nanopartículas , Vacunas de Partículas Similares a Virus/inmunología , Alérgenos/administración & dosificación , Animales , Antígenos de Plantas/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Epítopos de Linfocito T/inmunología , Femenino , Células HEK293 , Humanos , Inmunización , Ratones , Ratones Transgénicos , Modelos Biológicos , Proteínas de Plantas/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación
8.
Mucosal Immunol ; 11(6): 1653-1662, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30104625

RESUMEN

Aberrant type 2 responses underlie the pathologies in allergic diseases like asthma, yet, our understanding of the mechanisms that drive them remains limited. Recent evidence suggests that dysregulated innate immune factors can perpetuate asthma pathogenesis. In susceptible individuals, allergen exposure triggers the activation of complement, a major arm of innate immunity, leading to the aberrant generation of the C3a anaphylatoxin. C3 and C3a have been shown to be important for the development of Th2 responses, yet remarkably, the mechanisms by which C3a regulates type 2 immunity are relatively unknown. We demonstrate a central role for C3a in driving type 2 innate lymphoid cells (ILC2)-mediated inflammation in response to allergen and IL-33. Our data suggests that ILC2 recruitment is C3a-dependent. Further, we show that ILC2s directly respond to C3a, promoting type 2 responses by specifically: (1) inducing IL-13 and granulocyte-macrophage colony-stimulating factor, whereas inhibiting IL-10 production from ILC2; and (2) enhancing their antigen-presenting capability during ILC-T-cell cross-talk. In summary, we identify a novel mechanism by which C3a can mediate aberrant type 2 responses to aeroallergen exposure, which involves a yet unrecognized cross-talk between two major innate immune components-complement and group 2 innate lymphoid cells.


Asunto(s)
Asma/inmunología , Complemento C3a/metabolismo , Hipersensibilidad/inmunología , Inflamación/inmunología , Linfocitos/inmunología , Sistema Respiratorio/inmunología , Células Th2/inmunología , Alérgenos/inmunología , Animales , Presentación de Antígeno , Comunicación Celular , Movimiento Celular , Células Cultivadas , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Inmunidad Innata , Interleucina-10/metabolismo , Interleucina-13/metabolismo , Interleucina-33/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
9.
PLoS One ; 6(5): e19383, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21573118

RESUMEN

Vaccines based on peptide mimics (mimotopes) of conformational tumor antigen epitopes have been investigated for a variety of human tumors including breast cancer, tumors expressing the carcinoembryonic antigen, B cell lymphoma, neuroblastoma, and melanoma. In our previous work, we designed a vaccine based on a mimotope of the high molecular weight-melanoma associated antigen (HMW-MAA) that elicited HMW-MAA-specific antibodies (Abs) with anti-tumor activity in vitro and in vivo. In this study, we aimed to identify mimotopes of additional distinct HMW-MAA epitopes, since they could be used to construct a polymimotope melanoma vaccine. For this purpose, random peptide phage libraries were screened with the anti-HMW-MAA monoclonal antibodies (mAbs) VT80.12 and VF1-TP43 yielding one peptide ligand for each mAb. Both peptides inhibited the binding of the corresponding mAb to the HMW-MAA. Furthermore, when coupled to the carrier protein keyhole limpet hemocyanin (KLH), both HMW-MAA mimotopes elicited peptide-specific Abs in rabbits or BALB/c mice, but only the mimotope isolated with the mAb VT80.12 elicited HMW-MAA-specific Abs and only in mice. However, the latter Abs had no detectable effect on HMW-MAA expressing human melanoma cells in vitro. These results describe limitations related to the phage display technique and emphasize the need to characterize the functional properties of the mAb utilized to isolate mimotopes of the corresponding epitopes.


Asunto(s)
Anticuerpos Antineoplásicos/inmunología , Antígenos de Neoplasias/inmunología , Epítopos/inmunología , Animales , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Inmunohistoquímica , Ratones , Biblioteca de Péptidos , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA