Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Commun ; 15(1): 371, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191531

RESUMEN

Aurora Kinase A (AURKA) promotes cell proliferation and is overexpressed in different types of polycystic kidney disease (PKD). To understand AURKA's role in regulating renal cyst development we conditionally deleted the gene in mouse models of Autosomal Dominant PKD (ADPKD) and Joubert Syndrome, caused by Polycystin 1 (Pkd1) and Inositol polyphosphate-5-phosphatase E (Inpp5e) mutations respectively. We show that while Aurka is dispensable for collecting duct development and homeostasis, its deletion prevents cyst formation in both disease models. Cross-comparison of transcriptional changes implicated AKT signaling in cyst prevention and we show that (i) AURKA and AKT physically interact, (ii) AURKA regulates AKT activity in a kinase-independent manner and (iii) inhibition of AKT can reduce disease severity. AKT activation also regulates Aurka expression, creating a feed-forward loop driving renal cystogenesis. We find that the AURKA kinase inhibitor Alisertib stabilises the AURKA protein, agonizing its cystogenic functions. These studies identify AURKA as a master regulator of renal cyst development in different types of PKD, functioning in-part via AKT.


Asunto(s)
Aurora Quinasa A , Quistes , Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Animales , Ratones , Aurora Quinasa A/genética , Monoéster Fosfórico Hidrolasas , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/prevención & control , Proteínas Proto-Oncogénicas c-akt/genética
2.
Kidney Int ; 105(4): 731-743, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38158181

RESUMEN

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a leading cause of kidney failure and is associated with substantial morbidity and mortality. Interstitial inflammation is attributed to the action of infiltrating macrophages and is a feature thought to aggravate disease progression. Here, we investigated the therapeutic potential of the anti-inflammatory IL37b cytokine as a treatment for ADPKD using genetic mouse models, demonstrating that transgenic expression of human IL37b reduced collecting duct cyst burden in both early and adult-onset ADPKD rodent models. Moreover, injection of recombinant human IL37b could also reduce cyst burden in early onset ADPKD mice, an observation not associated with increased macrophage number at early stages of cyst formation. Interestingly, transgenic IL37b expression also did not alter macrophage numbers in advanced disease. Whole kidney RNA-seq highlighted an IL37b-mediated upregulation of the interferon signaling pathway and single-cell RNA-seq established that these changes originate at least partly from kidney resident macrophages. We further found that blocking type I interferon signaling in mice expressing IL37b resulted in increased cyst number, confirming this as an important pathway by which IL37b exerts its beneficial effects. Thus, our studies show that IL37b promotes interferon signaling in kidney resident macrophages which suppresses cyst initiation, identifying this protein as a potential therapy for ADPKD.


Asunto(s)
Quistes , Riñón Poliquístico Autosómico Dominante , Ratones , Humanos , Animales , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/genética , Inflamación/genética , Inflamación/complicaciones , Riñón/metabolismo , Quistes/complicaciones , Interleucinas , Interferones
3.
EMBO J ; 39(24): e105561, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33236795

RESUMEN

Studies of gene-targeted mice identified the roles of the different pro-survival BCL-2 proteins during embryogenesis. However, little is known about the role(s) of these proteins in adults in response to cytotoxic stresses, such as treatment with anti-cancer agents. We investigated the role of BCL-XL in adult mice using a strategy where prior bone marrow transplantation allowed for loss of BCL-XL exclusively in non-hematopoietic tissues to prevent anemia caused by BCL-XL deficiency in erythroid cells. Unexpectedly, the combination of total body γ-irradiation (TBI) and genetic loss of Bcl-x caused secondary anemia resulting from chronic renal failure due to apoptosis of renal tubular epithelium with secondary obstructive nephropathy. These findings identify a critical protective role of BCL-XL in the adult kidney and inform on the use of BCL-XL inhibitors in combination with DNA damage-inducing drugs for cancer therapy. Encouragingly, the combination of DNA damage-inducing anti-cancer therapy plus a BCL-XL inhibitor could be tolerated in mice, at least when applied sequentially.


Asunto(s)
Anemia/prevención & control , Riñón/efectos de la radiación , Proteína bcl-X/metabolismo , Proteína bcl-X/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteína 11 Similar a Bcl2/genética , Daño del ADN , Femenino , Rayos gamma , Neoplasias Hematológicas/patología , Inflamación , Riñón/metabolismo , Riñón/patología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transcriptoma , Proteínas Supresoras de Tumor/genética , Proteína bcl-X/deficiencia , Proteína bcl-X/genética
4.
Hum Mol Genet ; 29(1): 31-48, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31625572

RESUMEN

Polycystic kidney disease (PKD) results in the formation of renal cysts that can impair function leading to renal failure. DNA damage accumulates in renal epithelial cells in PKD, but the molecular mechanisms are unclear and are investigated here. Phosphoinositide 3-kinase (PI3K)/AKT signaling activates mammalian target of rapamycin complex 1 (mTORC1) and hyperactivation of mTORC1 is a common event in PKD; however, mTORC1 inhibitors have yielded disappointing results in clinical trials. Here, we demonstrate AKT and mTORC1 hyperactivation in two representative murine PKD models (renal epithelial-specific Inpp5e knockout and collecting duct-specific Pkd1 deletion) and identify a downstream signaling network that contributes to DNA damage accumulation. Inpp5e- and Pkd1-null renal epithelial cells showed DNA damage including double-stranded DNA breaks associated with increased replication fork numbers, multinucleation and centrosome amplification. mTORC1 activated CAD, which promotes de novo pyrimidine synthesis, to sustain cell proliferation. AKT, but not mTORC1, inhibited the DNA repair/replication fork origin firing regulator TOPBP1, which impacts on DNA damage and cell proliferation. Notably, Inpp5e- and Pkd1-null renal epithelial cell spheroid formation defects were rescued by AKT inhibition. These data reveal that AKT hyperactivation contributes to DNA damage accumulation in multiple forms of PKD and cooperates with mTORC1 to promote cell proliferation. Hyperactivation of AKT may play a causal role in PKD by regulating DNA damage and cell proliferation, independent of mTORC1, and AKT inhibition may be a novel therapeutic approach for PKD.


Asunto(s)
Daño del ADN/fisiología , Enfermedades Renales Poliquísticas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Proliferación Celular/genética , Proliferación Celular/fisiología , Células Cultivadas , Daño del ADN/genética , Electroforesis en Gel de Poliacrilamida , Immunoblotting , Inmunohistoquímica , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Enfermedades Renales Poliquísticas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
5.
Hum Mol Genet ; 28(15): 2573-2588, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31009951

RESUMEN

Mutations in subunits of the cilia-specific cytoplasmic dynein-2 (CD2) complex cause short-rib thoracic dystrophy syndromes (SRTDs), characterized by impaired bone growth and life-threatening perinatal respiratory complications. Different SRTD mutations result in varying disease severities. It remains unresolved whether this reflects the extent of retained hypomorphic protein functions or relative importance of the affected subunits for the activity of the CD2 holoenzyme. To define the contribution of the LC8-type dynein light chain subunit to the CD2 complex, we have generated Dynll1-deficient mouse strains, including the first-ever conditional knockout (KO) mutant for any CD2 subunit. Germline Dynll1 KO mice exhibit a severe ciliopathy-like phenotype similar to mice lacking another CD2 subunit, Dync2li1. Limb mesoderm-specific loss of Dynll1 results in severe bone shortening similar to human SRTD patients. Mechanistically, loss of Dynll1 leads to a partial depletion of other SRTD-related CD2 subunits, severely impaired retrograde intra-flagellar transport, significant thickening of primary cilia and cilia signaling defects. Interestingly, phenotypes of Dynll1-deficient mice are very similar to entirely cilia-deficient Kif3a/Ift88-null mice, except that they never present with polydactyly and retain relatively higher signaling outputs in parts of the hedgehog pathway. Compared to complete loss of Dynll1, maintaining very low DYNLL1 levels in mice lacking the Dynll1-transcription factor ASCIZ (ATMIN) results in significantly attenuated phenotypes and improved CD2 protein levels. The results suggest that primary cilia can maintain some functionality in the absence of intact CD2 complexes and provide a viable animal model for the analysis of the underlying bone development defects of SRTDs.


Asunto(s)
Enfermedades del Desarrollo Óseo/metabolismo , Cilios/metabolismo , Ciliopatías/metabolismo , Dineínas Citoplasmáticas/genética , Osteogénesis , Animales , Enfermedades del Desarrollo Óseo/genética , Enfermedades del Desarrollo Óseo/fisiopatología , Células Cultivadas , Cilios/fisiología , Ciliopatías/genética , Ciliopatías/fisiopatología , Dineínas Citoplasmáticas/metabolismo , Dineínas Citoplasmáticas/fisiología , Extremidades/patología , Extremidades/fisiopatología , Proteínas Hedgehog/metabolismo , Masculino , Ratones , Ratones Noqueados , Fenotipo , Transducción de Señal , Factores de Transcripción/metabolismo
6.
Front Genet ; 9: 530, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30473704

RESUMEN

Background: Duodenal atresia (DA) is a congenital obstruction of the duodenum, which affects 1 in 7000 pregnancies and requires major surgery in the 1st days of life. Three morphological DA types are described. In humans, the association between DA and Down syndrome suggests an underlying, albeit elusive, genetic etiology. In mice, interruption of fibroblast growth factor 10 (Fgf10) gene signaling results in DA in 30-50% of embryos, supporting a genetic etiology. This study aims to validate the spectrum of DA in two novel strains of Fgf10 knock-out mice, in preparation for future and translational research. Methods: Two novel CRISPR Fgf10 knock-out mouse strains were derived and embryos generated by heterozygous plug-mating. E15.5-E19.5 embryos were genotyped with respect to Fgf10 and micro-dissected to determine the presence and type of DA. Results: One twenty seven embryos (32 wild-type, 34 heterozygous, 61 null) were analyzed. No wild-type or heterozygous embryos had DA. However, 74% of Fgf10 null embryos had DA (49% type 1, 18% type 2, and 33% type 3). Conclusion: Our CRISPR-derived strains showed higher penetrance of DA due to single-gene deletion of Fgf10 in mice than previously reported. Further, the DA type distribution in these mice more closely reiterated that observed in humans. Future experiments will document RNA and protein expression of FGF10 and its key downstream signaling targets in normal and atretic duodenum. This includes exploitation of modern, high-fidelity developmental tools, e.g., Fgf10 flox/+-tomatoflox/flox mice.

7.
Cell Death Dis ; 9(11): 1072, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30341279

RESUMEN

Identifying soluble factors that influence epidermal integrity is critical for the development of preventative and therapeutic strategies for disorders such as ichthyosis, psoriasis, dermatitis and epidermal cancers. The transcription factor Grainyhead-like 3 (GRHL3) is essential for maintaining barrier integrity and preventing development of cutaneous squamous cell carcinoma (SCC); however, how loss of this factor, which in the skin is expressed exclusively within suprabasal epidermal layers triggers proliferation of basal keratinocytes, had thus far remained elusive. Our present study identifies thymus and activation-regulated chemokine (TARC) as a novel soluble chemokine mediator of keratinocyte proliferation following loss of GRHL3. Knockdown of GRHL3 in human keratinocytes showed that of 42 cytokines examined, TARC was the only significantly upregulated chemokine. Mouse skin lacking Grhl3 presented an inflammatory response with hallmarks of TARC activation, including heightened induction of blood clotting, increased infiltration of mast cells and pro-inflammatory T cells, increased expression of the pro-proliferative/pro-inflammatory markers CD3 and pSTAT3, and significantly elevated basal keratinocyte proliferation. Treatment of skin cultures lacking Grhl3 with the broad spectrum anti-inflammatory 5-aminosalicylic acid (5ASA) partially restored epidermal differentiation, indicating that abnormal keratinocyte proliferation/differentiation balance is a key driver of barrier dysfunction following loss of Grhl3, and providing a promising therapeutic avenue in the treatment of GRHL3-mediated epidermal disorders.


Asunto(s)
Proliferación Celular , Quimiocina CCL17/metabolismo , Proteínas de Unión al ADN/metabolismo , Epidermis/metabolismo , Queratinocitos/metabolismo , Factores de Transcripción/metabolismo , Animales , Carcinoma de Células Escamosas/prevención & control , Línea Celular , Proteínas de Unión al ADN/genética , Técnicas de Inactivación de Genes , Humanos , Mesalamina/farmacología , Ratones , Ratones Endogámicos NOD , Ratones Noqueados/embriología , Ratones SCID , Piel/efectos de los fármacos , Piel/embriología , Piel/metabolismo , Neoplasias Cutáneas/prevención & control , Factores de Transcripción/genética
8.
Cell Rep ; 24(12): 3285-3295.e4, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30232009

RESUMEN

Apoptotic cell death removes unwanted cells and is regulated by interactions between pro-survival and pro-apoptotic members of the BCL-2 protein family. The regulation of apoptosis is thought to be crucial for normal embryonic development. Accordingly, complete loss of pro-survival MCL-1 or BCL-XL (BCL2L1) causes embryonic lethality. However, it is not known whether minor reductions in pro-survival proteins could cause developmental abnormalities. We explored the rate-limiting roles of MCL-1 and BCL-XL in development and show that combined loss of single alleles of Mcl-1 and Bcl-x causes neonatal lethality. Mcl-1+/-;Bcl-x+/- mice display craniofacial anomalies, but additional loss of a single allele of pro-apoptotic Bim (Bcl2l11) restores normal development. These findings demonstrate that the control of cell survival during embryogenesis is finely balanced and suggest that some human craniofacial defects, for which causes are currently unknown, may be due to subtle imbalances between pro-survival and pro-apoptotic BCL-2 family members.


Asunto(s)
Proteína 11 Similar a Bcl2/genética , Anomalías Craneofaciales/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína bcl-X/genética , Animales , Apoptosis , Proteína 11 Similar a Bcl2/metabolismo , Células Cultivadas , Femenino , Heterocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína bcl-X/metabolismo
9.
Kidney Int ; 93(3): 589-598, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29217079

RESUMEN

The regulation of final nephron number in the kidney is poorly understood. Cessation of nephron formation occurs when the self-renewing nephron progenitor population commits to differentiation. Transcription factors within this progenitor population, such as SIX2, are assumed to control expression of genes promoting self-renewal such that homozygous Six2 deletion results in premature commitment and an early halt to kidney development. In contrast, Six2 heterozygotes were assumed to be unaffected. Using quantitative morphometry, we found a paradoxical 18% increase in ureteric branching and final nephron number in Six2 heterozygotes, despite evidence for reduced levels of SIX2 protein and transcript. This was accompanied by a clear shift in nephron progenitor identity with a distinct subset of downregulated progenitor genes such as Cited1 and Meox1 while other genes were unaffected. The net result was an increase in nephron progenitor proliferation, as assessed by elevated EdU (5-ethynyl-2'-deoxyuridine) labeling, an increase in MYC protein, and transcriptional upregulation of MYC target genes. Heterozygosity for Six2 on an Fgf20-/- background resulted in premature differentiation of the progenitor population, confirming that progenitor regulation is compromised in Six2 heterozygotes. Overall, our studies reveal a unique dose response of nephron progenitors to the level of SIX2 protein in which the role of SIX2 in progenitor proliferation versus self-renewal is separable.


Asunto(s)
Proliferación Celular/genética , Autorrenovación de las Células/genética , Haploinsuficiencia , Proteínas de Homeodominio/genética , Morfogénesis/genética , Nefronas/metabolismo , Células Madre/metabolismo , Factores de Transcripción/genética , Animales , Proteínas Reguladoras de la Apoptosis , Factores de Crecimiento de Fibroblastos/deficiencia , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Genotipo , Heterocigoto , Proteínas de Homeodominio/metabolismo , Ratones Noqueados , Nefronas/embriología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/deficiencia
10.
Development ; 144(23): 4377-4385, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29038307

RESUMEN

Metanephric kidney development is orchestrated by the iterative branching morphogenesis of the ureteric bud. We describe an underlying patterning associated with the ramification of this structure and show that this pattern is conserved between developing kidneys, in different parts of the organ and across developmental time. This regularity is associated with a highly reproducible branching asymmetry that is consistent with locally operative growth mechanisms. We then develop a class of tip state models to represent elaboration of the ureteric tree and describe rules for 'half-delay' branching morphogenesis that describe almost perfectly the patterning of this structure. Spatial analysis suggests that the observed asymmetry may arise from mutual suppression of bifurcation, but not extension, between the growing ureteric tips, and demonstrates that disruption of patterning occurs in mouse mutants in which the distribution of tips on the surface of the kidney is altered. These findings demonstrate that kidney development occurs by way of a highly conserved reiterative pattern of asymmetric bifurcation that is governed by intrinsic and locally operative mechanisms.


Asunto(s)
Riñón/embriología , Morfogénesis/fisiología , Uréter/embriología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Proteína Morfogenética Ósea 7/deficiencia , Proteína Morfogenética Ósea 7/genética , Proteína Morfogenética Ósea 7/fisiología , Imagenología Tridimensional , Conceptos Matemáticos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Modelos Biológicos , Morfogénesis/genética , Mutación , Fenotipo , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Fosfoproteínas/fisiología , Factor de Crecimiento Transformador beta2/deficiencia , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/fisiología
11.
Hum Mol Genet ; 25(11): 2295-2313, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27056978

RESUMEN

Polycystic kidney disease (PKD) is a common cause of renal failure with few effective treatments. INPP5E is an inositol polyphosphate 5-phosphatase that dephosphorylates phosphoinositide 3-kinase (PI3K)-generated PI(3,4,5)P3 and is mutated in ciliopathy syndromes. Germline Inpp5e deletion is embryonically lethal, attributed to cilia stability defects, and is associated with polycystic kidneys. However, the molecular mechanisms responsible for PKD development upon Inpp5e loss remain unknown. Here, we show conditional inactivation of Inpp5e in mouse kidney epithelium results in severe PKD and renal failure, associated with a partial reduction in cilia number and hyperactivation of PI3K/Akt and downstream mammalian target of rapamycin complex 1 (mTORC1) signaling. Treatment with an mTORC1 inhibitor improved kidney morphology and function, but did not affect cilia number or length. Therefore, we identify Inpp5e as an essential inhibitor of the PI3K/Akt/mTORC1 signaling axis in renal epithelial cells, and demonstrate a critical role for Inpp5e-dependent mTORC1 regulation in PKD suppression.


Asunto(s)
Riñón/metabolismo , Complejos Multiproteicos/genética , Monoéster Fosfórico Hidrolasas/genética , Enfermedades Renales Poliquísticas/genética , Serina-Treonina Quinasas TOR/genética , Animales , Ciliopatías/tratamiento farmacológico , Ciliopatías/genética , Ciliopatías/patología , Modelos Animales de Enfermedad , Elafina/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Mutación de Línea Germinal , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Enfermedades Renales Poliquísticas/patología , Proteínas Proto-Oncogénicas c-akt/genética , Eliminación de Secuencia , Transducción de Señal/efectos de los fármacos , Sirolimus/administración & dosificación , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
12.
J Cell Sci ; 128(2): 364-72, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25395580

RESUMEN

Mutations in inositol polyphosphate 5-phosphatase E (INPP5E) cause the ciliopathies known as Joubert and MORM syndromes; however, the role of INPP5E in ciliary biology is not well understood. Here, we describe an interaction between INPP5E and AURKA, a centrosomal kinase that regulates mitosis and ciliary disassembly, and we show that this interaction is important for the stability of primary cilia. Furthermore, AURKA phosphorylates INPP5E and thereby increases its 5-phosphatase activity, which in turn promotes transcriptional downregulation of AURKA, partly through an AKT-dependent mechanism. These findings establish the first direct link between AURKA and phosphoinositide signaling and suggest that the function of INPP5E in cilia is at least partly mediated by its interactions with AURKA.


Asunto(s)
Aurora Quinasa A/metabolismo , Cilios/metabolismo , Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Aurora Quinasa A/genética , Cerebelo/anomalías , Cerebelo/patología , Cilios/genética , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Regulación de la Expresión Génica , Humanos , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Mitosis/genética , Mutación , Monoéster Fosfórico Hidrolasas/genética , Mapas de Interacción de Proteínas/genética , Retina/anomalías , Retina/patología , Transducción de Señal
13.
J Theor Biol ; 365: 226-37, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25308508

RESUMEN

Bifurcating developmental branching morphogenesis gives rise to complex organs such as the lung and the ureteric tree of the kidney. However, a few quantitative methods or tools exist to compare and distinguish, at a structural level, the critical features of these important biological systems. Here we develop novel graph alignment techniques to quantify the structural differences of rooted bifurcating trees and demonstrate their application in the analysis of developing kidneys from in normal and mutant mice. We have developed two graph based metrics: graph discordance, which measures how well the graphs representing the branching structures of distinct trees graphs can be aligned or overlayed; and graph inclusion, which measures the degree of containment of a tree graph within another. To demonstrate the application of these approaches we first benchmark the discordance metric on a data set of 32 normal and 28Tgfß(+/-) mutant mouse ureteric trees. We find that the discordance metric better distinguishes control and mutant mouse kidneys than alternative metrics based on graph size and fingerprints - the distribution of tip depths. Using this metric we then show that the structure of the mutant trees follows the same pattern as the normal kidneys, but undergo a major delay in elaboration at later stages. Analysis of both controls and mutants using the inclusion metric gives strong support to the hypothesis that ureteric tree growth is stereotypic. Additionally, we present a new generalised multi-tree alignment algorithm that minimises the sum of pairwise graph discordance and which can be used to generate maximum consensus trees that represent the archetype for fixed developmental stages. These tools represent an advance in the analysis and quantification of branching patterns and will be invaluable in gaining a deeper understanding of the mechanisms that drive development. All code is being made available with documentation and example data with this publication.


Asunto(s)
Morfogénesis , Uréter/crecimiento & desarrollo , Animales , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Ratones , Mutación/genética , Factor de Crecimiento Transformador beta2/metabolismo , Uréter/metabolismo
14.
Cell Metab ; 18(2): 225-38, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23931754

RESUMEN

ABCA12 is involved in the transport of ceramides in skin, but it may play a wider role in lipid metabolism. We show that, in Abca12-deficient macrophages, cholesterol efflux failed to respond to activation with LXR agonists. Abca12 deficiency caused a reduction in the abundance of Abca1, Abcg1, and Lxrß. Overexpression of Lxrß reversed the effects. Mechanistically, Abca12 deficiency did not affect expression of genes involved in cholesterol metabolism. Instead, a physical association between Abca1, Abca12, and Lxrß proteins was established. Abca12 deficiency enhanced interaction between Abca1 and Lxrß and the degradation of Abca1. Overexpression of ABCA12 in HeLa-ABCA1 cells increased the abundance and stability of ABCA1. Abca12 deficiency caused an accumulation of cholesterol in macrophages and the formation of foam cells, impaired reverse cholesterol transport in vivo, and increased the development of atherosclerosis in irradiated Apoe(-/-) mice reconstituted with Apoe(-/-)Abca12(-/-) bone marrow. Thus, ABCA12 regulates the cellular cholesterol metabolism via an LXRß-dependent posttranscriptional mechanism.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/deficiencia , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Transporte Biológico/genética , Línea Celular , Células Espumosas/metabolismo , Células HeLa , Humanos , Metabolismo de los Lípidos/genética , Lipoproteínas/metabolismo , Receptores X del Hígado , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Nucleares Huérfanos/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA