Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Clin Cancer Res ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949890

RESUMEN

PURPOSE: Classic Hodgkin lymphoma (cHL) is a B cell lymphoma that occurs primarily in young adults and, less frequently, in elderly individuals. A hallmark of cHL is the exceptional scarcity (1-5%) of the malignant Hodgkin Reed-Sternberg (HRS) cells within a network of non-malignant immune cells. Molecular determinants governing the relationship between HRS cells and their proximal microenvironment remain largely unknown. EXPERIMENTAL DESIGN: We performed spatially resolved multiplexed protein imaging and transcriptomic sequencing to characterize HRS cell states, cellular neighborhoods, and gene expression signatures of 23.6 million cells from 36 newly diagnosed Epstein-Barr virus (EBV) positive and EBV-negative cHL tumors. RESULTS: We show that MHC-I expression on HRS cells is associated with immune inflamed neighborhoods containing CD8+ T cells, MHC-II+ macrophages, and immune checkpoint expression (i.e., PD-1 and VISTA). We identified spatial clustering of HRS cells, consistent with the syncytial variant of cHL, and its association with T cell excluded neighborhoods in a subset of EBV-negative tumors. Finally, a subset of both EBV-positive and EBV-negative tumors contained regulatory T cells high neighborhoods harboring HRS cells with augmented proliferative capacity. CONCLUSIONS: Our study links HRS cell properties with distinct immunophenotypes and potential immune escape mechanisms in cHL.

2.
Nat Commun ; 15(1): 5155, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886411

RESUMEN

Dysregulated epigenetic states are a hallmark of cancer and often arise from genetic alterations in epigenetic regulators. This includes missense mutations in histones, which, together with associated DNA, form nucleosome core particles. However, the oncogenic mechanisms of most histone mutations are unknown. Here, we demonstrate that cancer-associated histone mutations at arginines in the histone H3 N-terminal tail disrupt repressive chromatin domains, alter gene regulation, and dysregulate differentiation. We find that histone H3R2C and R26C mutants reduce transcriptionally repressive H3K27me3. While H3K27me3 depletion in cells expressing these mutants is exclusively observed on the minor fraction of histone tails harboring the mutations, the same mutants recurrently disrupt broad H3K27me3 domains in the chromatin context, including near developmentally regulated promoters. H3K27me3 loss leads to de-repression of differentiation pathways, with concordant effects between H3R2 and H3R26 mutants despite different proximity to the PRC2 substrate, H3K27. Functionally, H3R26C-expressing mesenchymal progenitor cells and murine embryonic stem cell-derived teratomas demonstrate impaired differentiation. Collectively, these data show that cancer-associated H3 N-terminal arginine mutations reduce PRC2 activity and disrupt chromatin-dependent developmental functions, a cancer-relevant phenotype.


Asunto(s)
Arginina , Diferenciación Celular , Histonas , Mutación , Neoplasias , Complejo Represivo Polycomb 2 , Histonas/metabolismo , Histonas/genética , Diferenciación Celular/genética , Arginina/metabolismo , Animales , Humanos , Ratones , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Cromatina/metabolismo , Epigénesis Genética , Células Madre Mesenquimatosas/metabolismo , Línea Celular Tumoral
3.
Blood ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728378

RESUMEN

B-cell maturation antigen (BCMA)-targeting therapeutics have dramatically improved outcomes in relapsed/refractory multiple myeloma (RRMM). However, whether the mechanisms of resistance between these therapies are shared and how the identification of such mechanisms before therapy initiation could refine clinical decision-making remains undefined. We analyzed outcomes for 72 RRMM patients treated with teclistamab, a CD3 x BCMA bispecific antibody (BsAb), 42% (30/72) of whom had prior BCMA-directed therapy exposure. Malignant plasma cell BCMA expression was present in all BCMA therapy-naïve patients. Prior therapy-mediated loss of plasma cell BCMA expression before teclistamab treatment, measured by immunohistochemistry, was observed in 3 patients, none of whom responded to teclistamab, and one of whom also did not respond to ciltacabtagene autoleucel. Whole exome sequencing of tumor DNA from one patient revealed biallelic loss of TNFRSF17 following treatment with belantamab mafodotin. Low-to-undetectable peripheral blood soluble BCMA levels correlated with the absence of BCMA expression by bone marrow plasma cells. Thus, although rare, loss of BCMA expression following TNFRSF17 gene deletions can occur following any BCMA-directed therapy and prevents response to subsequent anti-BCMA-directed treatments, underscoring the importance of verifying the presence of a target antigen.

4.
Nature ; 629(8013): 927-936, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588697

RESUMEN

Broad-spectrum RAS inhibition has the potential to benefit roughly a quarter of human patients with cancer whose tumours are driven by RAS mutations1,2. RMC-7977 is a highly selective inhibitor of the active GTP-bound forms of KRAS, HRAS and NRAS, with affinity for both mutant and wild-type variants3. More than 90% of cases of human pancreatic ductal adenocarcinoma (PDAC) are driven by activating mutations in KRAS4. Here we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models. We observed broad and pronounced anti-tumour activity across models following direct RAS inhibition at exposures that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumour versus normal tissues. Treated tumours exhibited waves of apoptosis along with sustained proliferative arrest, whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. In the autochthonous KPC mouse model, RMC-7977 treatment resulted in a profound extension of survival followed by on-treatment relapse. Analysis of relapsed tumours identified Myc copy number gain as a prevalent candidate resistance mechanism, which could be overcome by combinatorial TEAD inhibition in vitro. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS-GTP inhibition in the setting of PDAC and identify a promising candidate combination therapeutic regimen to overcome monotherapy resistance.


Asunto(s)
Antineoplásicos , Carcinoma Ductal Pancreático , Guanosina Trifosfato , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Animales , Femenino , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Variaciones en el Número de Copia de ADN , Resistencia a Antineoplásicos/efectos de los fármacos , Genes myc , Guanosina Trifosfato/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto , Mutación
5.
Sci Adv ; 10(12): eadn4649, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517960

RESUMEN

Genomic rearrangements are a hallmark of most childhood tumors, including medulloblastoma, one of the most common brain tumors in children, but their causes remain largely unknown. Here, we show that PiggyBac transposable element derived 5 (Pgbd5) promotes tumor development in multiple developmentally accurate mouse models of Sonic Hedgehog (SHH) medulloblastoma. Most Pgbd5-deficient mice do not develop tumors, while maintaining normal cerebellar development. Ectopic activation of SHH signaling is sufficient to enforce cerebellar granule cell progenitor-like cell states, which exhibit Pgbd5-dependent expression of distinct DNA repair and neurodevelopmental factors. Mouse medulloblastomas expressing Pgbd5 have increased numbers of somatic structural DNA rearrangements, some of which carry PGBD5-specific sequences at their breakpoints. Similar sequence breakpoints recurrently affect somatic DNA rearrangements of known tumor suppressors and oncogenes in medulloblastomas in 329 children. This identifies PGBD5 as a medulloblastoma mutator and provides a genetic mechanism for the generation of oncogenic DNA rearrangements in childhood cancer.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Humanos , Niño , Animales , Ratones , Meduloblastoma/genética , Transposasas/genética , Transposasas/metabolismo , Proteínas Hedgehog/metabolismo , Factores de Transcripción/genética , Mutagénesis , Neoplasias Cerebelosas/genética
6.
Clin Cancer Res ; 30(2): 450-461, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37943631

RESUMEN

PURPOSE: This study sought to identify ß-catenin targets that regulate desmoid oncogenesis and determine whether external signaling pathways, particularly those inhibited by sorafenib (e.g., PDGFRß), affect these targets to alter natural history or treatment response in patients. EXPERIMENTAL DESIGN: In vitro experiments utilized primary desmoid cell lines to examine regulation of ß-catenin targets. Relevance of results was assessed in vivo using Alliance trial A091105 correlative biopsies. RESULTS: CTNNB1 knockdown inhibited hypoxia-regulated gene expression in vitro and reduced levels of HIF1α protein. ChIP-seq identified ABL1 as a ß-catenin transcriptional target that modulated HIF1α and desmoid cell proliferation. Abrogation of either CTNNB1 or HIF1A inhibited desmoid cell-induced VEGFR2 phosphorylation and tube formation in endothelial cell co-cultures. Sorafenib inhibited this activity directly but also reduced HIF1α protein expression and c-Abl activity while inhibiting PDGFRß signaling in desmoid cells. Conversely, c-Abl activity and desmoid cell proliferation were positively regulated by PDGF-BB. Reduction in PDGFRß and c-Abl phosphorylation was commonly observed in biopsy samples from patients after treatment with sorafenib; markers of PDGFRß/c-Abl pathway activation in baseline samples were associated with tumor progression in patients on the placebo arm and response to sorafenib in patients receiving treatment. CONCLUSIONS: The ß-catenin transcriptional target ABL1 is necessary for proliferation and maintenance of HIF1α in desmoid cells. Regulation of c-Abl activity by PDGF signaling and targeted therapies modulates desmoid cell proliferation, thereby suggesting a reason for variable biologic behavior between tumors, a mechanism for sorafenib activity in desmoids, and markers predictive of outcome in patients.


Asunto(s)
Productos Biológicos , Fibromatosis Agresiva , Humanos , Fibromatosis Agresiva/tratamiento farmacológico , Fibromatosis Agresiva/genética , beta Catenina/genética , beta Catenina/metabolismo , Sorafenib/farmacología , Transducción de Señal
7.
Cancer Immunol Res ; 12(3): 308-321, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38108398

RESUMEN

Colitis induced by treatment with immune-checkpoint inhibitors (ICI), termed irColitis, is a substantial cause of morbidity complicating cancer treatment. We hypothesized that abnormal fecal microbiome features would be present at the time of irColitis onset and that restoring the microbiome with fecal transplant from a healthy donor would mitigate disease severity. Herein, we present fecal microbiota profiles from 18 patients with irColitis from a single center, 5 of whom were treated with healthy-donor fecal microbial transplantation (FMT). Although fecal samples collected at onset of irColitis had comparable α-diversity to that of comparator groups with gastrointestinal symptoms, irColitis was characterized by fecal microbial dysbiosis. Abundances of Proteobacteria were associated with irColitis in multivariable analyses. Five patients with irColitis refractory to steroids and biologic anti-inflammatory agents received healthy-donor FMT, with initial clinical improvement in irColitis symptoms observed in four of five patients. Two subsequently exhibited recurrence of irColitis symptoms following courses of antibiotics. Both received a second "salvage" FMT that was, again, followed by clinical improvement of irColitis. In summary, we observed distinct microbial community changes that were present at the time of irColitis onset. FMT was followed by clinical improvements in several cases of steroid- and biologic-agent-refractory irColitis. Strategies to restore or prevent microbiome dysbiosis in the context of immunotherapy toxicities should be further explored in prospective clinical trials.


Asunto(s)
Productos Biológicos , Colitis , Microbioma Gastrointestinal , Humanos , Trasplante de Microbiota Fecal/efectos adversos , Estudios Prospectivos , Disbiosis/terapia , Disbiosis/etiología , Resultado del Tratamiento , Colitis/terapia , Colitis/complicaciones
8.
Sci Transl Med ; 15(706): eabq0476, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37494469

RESUMEN

T cells are the central drivers of many inflammatory diseases, but the repertoire of tissue-resident T cells at sites of pathology in human organs remains poorly understood. We examined the site-specificity of T cell receptor (TCR) repertoires across tissues (5 to 18 tissues per patient) in prospectively collected autopsies of patients with and without graft-versus-host disease (GVHD), a potentially lethal tissue-targeting complication of allogeneic hematopoietic cell transplantation, and in mouse models of GVHD. Anatomic similarity between tissues was a key determinant of TCR repertoire composition within patients, independent of disease or transplant status. The T cells recovered from peripheral blood and spleens in patients and mice captured a limited portion of the TCR repertoire detected in tissues. Whereas few T cell clones were shared across patients, motif-based clustering revealed shared repertoire signatures across patients in a tissue-specific fashion. T cells at disease sites had a tissue-resident phenotype and were of donor origin based on single-cell chimerism analysis. These data demonstrate the complex composition of T cell populations that persist in human tissues at the end stage of an inflammatory disorder after lymphocyte-directed therapy. These findings also underscore the importance of studying T cell in tissues rather than blood for tissue-based pathologies and suggest the tissue-specific nature of both the endogenous and posttransplant T cell landscape.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Animales , Linfocitos T/patología , Enfermedad Injerto contra Huésped/patología , Receptores de Antígenos de Linfocitos T
9.
Cancer Discov ; 13(4): 824-828, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37009699

RESUMEN

The shift in cancer therapy from broadly cytotoxic agents toward "personalized" treatments that target specific alterations in each patient's tumor requires diagnostic pathology approaches that are quantitative and biospecimen-friendly. Novel multiplexed antibody-based imaging technologies can measure single-cell expression of over 60 proteins in intact tumor sections and hold promise for clinical oncology.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Oncología Médica , Proteínas
10.
Clin Cancer Res ; 29(13): 2445-2455, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36862133

RESUMEN

PURPOSE: To overcome barriers to genomic testing for patients with rare cancers, we initiated a program to offer free clinical tumor genomic testing worldwide to patients with select rare cancer subtypes. EXPERIMENTAL DESIGN: Patients were recruited through social media outreach and engagement with disease-specific advocacy groups, with a focus on patients with histiocytosis, germ cell tumors (GCT), and pediatric cancers. Tumors were analyzed using the MSK-IMPACT next-generation sequencing assay with the return of results to patients and their local physicians. Whole-exome recapture was performed for female patients with GCTs to define the genomic landscape of this rare cancer subtype. RESULTS: A total of 333 patients were enrolled, and tumor tissue was received for 288 (86.4%), with 250 (86.8%) having tumor DNA of sufficient quality for MSK-IMPACT testing. Eighteen patients with histiocytosis have received genomically guided therapy to date, of whom 17 (94%) have had clinical benefit with a mean treatment duration of 21.7 months (range, 6-40+). Whole-exome sequencing of ovarian GCTs identified a subset with haploid genotypes, a phenotype rarely observed in other cancer types. Actionable genomic alterations were rare in ovarian GCT (28%); however, 2 patients with ovarian GCTs with squamous transformation had high tumor mutational burden, one of whom had a complete response to pembrolizumab. CONCLUSIONS: Direct-to-patient outreach can facilitate the assembly of cohorts of rare cancers of sufficient size to define their genomic landscape. By profiling tumors in a clinical laboratory, results could be reported to patients and their local physicians to guide treatment. See related commentary by Desai and Subbiah, p. 2339.


Asunto(s)
Neoplasias de Células Germinales y Embrionarias , Neoplasias Ováricas , Humanos , Femenino , Mutación , Genómica , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Exoma
11.
J Exp Med ; 220(3)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36534085

RESUMEN

Late cardiac toxicity is a potentially lethal complication of cancer therapy, yet the pathogenic mechanism remains largely unknown, and few treatment options exist. Here we report DNA-damaging agents such as radiation and anthracycline chemotherapies inducing delayed cardiac inflammation following therapy due to activation of cGAS- and STING-dependent type I interferon signaling. Genetic ablation of cGAS-STING signaling in mice inhibits DNA damage-induced cardiac inflammation, rescues late cardiac functional decline, and prevents death from cardiac events. Treatment with a STING antagonist suppresses cardiac interferon signaling following DNA-damaging therapies and effectively mitigates cardiac toxicity. These results identify a therapeutically targetable, pathogenic mechanism for one of the most vexing treatment-related toxicities in cancer survivors.


Asunto(s)
Antineoplásicos , Cardiotoxicidad , Daño del ADN , Neoplasias , Animales , Ratones , Inmunidad Innata , Inflamación , Neoplasias/tratamiento farmacológico , Nucleotidiltransferasas/genética , Antineoplásicos/efectos adversos
12.
Cancer Discov ; 13(1): 41-55, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36355783

RESUMEN

With the combination of KRASG12C and EGFR inhibitors, KRAS is becoming a druggable target in colorectal cancer. However, secondary resistance limits its efficacy. Using cell lines, patient-derived xenografts, and patient samples, we detected a heterogeneous pattern of putative resistance alterations expected primarily to prevent inhibition of ERK signaling by drugs at progression. Serial analysis of patient blood samples on treatment demonstrates that most of these alterations are detected at a low frequency except for KRASG12C amplification, a recurrent resistance mechanism that rises in step with clinical progression. Upon drug withdrawal, resistant cells with KRASG12C amplification undergo oncogene-induced senescence, and progressing patients experience a rapid fall in levels of this alteration in circulating DNA. In this new state, drug resumption is ineffective as mTOR signaling is elevated. However, our work exposes a potential therapeutic vulnerability, whereby therapies that target the senescence response may overcome acquired resistance. SIGNIFICANCE: Clinical resistance to KRASG12C-EGFR inhibition primarily prevents suppression of ERK signaling. Most resistance mechanisms are subclonal, whereas KRASG12C amplification rises over time to drive a higher portion of resistance. This recurrent resistance mechanism leads to oncogene-induced senescence upon drug withdrawal and creates a potential vulnerability to senolytic approaches. This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Animales , Humanos , Resistencia a Antineoplásicos/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Transducción de Señal , Modelos Animales de Enfermedad , Receptores ErbB , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Mutación
14.
Front Immunol ; 13: 880959, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505421

RESUMEN

Response to immunotherapy across multiple cancer types is approximately 25%, with some tumor types showing increased response rates compared to others (i.e. response rates in melanoma and non-small cell lung cancer (NSCLC) are typically 30-60%). Patients whose tumors are resistant to immunotherapy often lack high levels of pre-existing inflammation in the tumor microenvironment. Increased tumor glycolysis, acting through glucose deprivation and lactic acid accumulation, has been shown to have pleiotropic immune suppressive effects using in-vitro and in-vivo models of disease. To determine whether the immune suppressive effect of tumor glycolysis is observed across human solid tumors, we analyzed glycolytic and immune gene expression patterns in multiple solid malignancies. We found that increased expression of a glycolytic signature was associated with decreased immune infiltration and a more aggressive disease across multiple tumor types. Radiologic and pathologic analysis of untreated estrogen receptor (ER)-negative breast cancers corroborated these observations, and demonstrated that protein expression of glycolytic enzymes correlates positively with glucose uptake and negatively with infiltration of CD3+ and CD8+ lymphocytes. This study reveals an inverse relationship between tumor glycolysis and immune infiltration in a large cohort of multiple solid tumor types.


Asunto(s)
Neoplasias de la Mama , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Femenino , Inmunoterapia , Glucólisis , Microambiente Tumoral
15.
Nat Commun ; 13(1): 6575, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323682

RESUMEN

Cancers arising from the bladder urothelium often exhibit lineage plasticity with regions of urothelial carcinoma adjacent to or admixed with regions of divergent histomorphology, most commonly squamous differentiation. To define the biologic basis for and clinical significance of this morphologic heterogeneity, here we perform integrated genomic analyses of mixed histology bladder cancers with separable regions of urothelial and squamous differentiation. We find that squamous differentiation is a marker of intratumoral genomic and immunologic heterogeneity in patients with bladder cancer and a biomarker of intrinsic immunotherapy resistance. Phylogenetic analysis confirms that in all cases the urothelial and squamous regions are derived from a common shared precursor. Despite the presence of marked genomic heterogeneity between co-existent urothelial and squamous differentiated regions, no recurrent genomic alteration exclusive to the urothelial or squamous morphologies is identified. Rather, lineage plasticity in bladder cancers with squamous differentiation is associated with loss of expression of FOXA1, GATA3, and PPARG, transcription factors critical for maintenance of urothelial cell identity. Of clinical significance, lineage plasticity and PD-L1 expression is coordinately dysregulated via FOXA1, with patients exhibiting morphologic heterogeneity pre-treatment significantly less likely to respond to immune checkpoint inhibitors.


Asunto(s)
Carcinoma de Células Escamosas , Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Transicionales/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Filogenia , Neoplasias de la Vejiga Urinaria/patología , Linaje de la Célula
16.
Nature ; 608(7924): 795-802, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35978189

RESUMEN

Although p53 inactivation promotes genomic instability1 and presents a route to malignancy for more than half of all human cancers2,3, the patterns through which heterogenous TP53 (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse model of pancreatic ductal adenocarcinoma that reports sporadic p53 loss of heterozygosity before cancer onset, we find that malignant properties enabled by p53 inactivation are acquired through a predictable pattern of genome evolution. Single-cell sequencing and in situ genotyping of cells from the point of p53 inactivation through progression to frank cancer reveal that this deterministic behaviour involves four sequential phases-Trp53 (encoding mouse p53) loss of heterozygosity, accumulation of deletions, genome doubling, and the emergence of gains and amplifications-each associated with specific histological stages across the premalignant and malignant spectrum. Despite rampant heterogeneity, the deletion events that follow p53 inactivation target functionally relevant pathways that can shape genomic evolution and remain fixed as homogenous events in diverse malignant populations. Thus, loss of p53-the 'guardian of the genome'-is not merely a gateway to genetic chaos but, rather, can enable deterministic patterns of genome evolution that may point to new strategies for the treatment of TP53-mutant tumours.


Asunto(s)
Carcinogénesis , Progresión de la Enfermedad , Genes p53 , Genoma , Pérdida de Heterocigocidad , Neoplasias Pancreáticas , Proteína p53 Supresora de Tumor , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Evolución Molecular , Eliminación de Gen , Genes p53/genética , Genoma/genética , Ratones , Modelos Genéticos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteína p53 Supresora de Tumor/genética
17.
Nat Commun ; 13(1): 3405, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705560

RESUMEN

The genetic, biologic, and clinical heterogeneity of sarcomas poses a challenge for the identification of therapeutic targets, clinical research, and advancing patient care. Because there are > 100 sarcoma subtypes, in-depth genetic studies have focused on one or a few subtypes. Herein, we report a comparative genetic analysis of 2,138 sarcomas representing 45 pathological entities. This cohort is prospectively analyzed using targeted sequencing to characterize subtype-specific somatic alterations in targetable pathways, rates of whole genome doubling, mutational signatures, and subtype-agnostic genomic clusters. The most common alterations are in cell cycle control and TP53, receptor tyrosine kinases/PI3K/RAS, and epigenetic regulators. Subtype-specific associations include TERT amplification in intimal sarcoma and SWI/SNF alterations in uterine adenosarcoma. Tumor mutational burden, while low compared to other cancers, varies between and within subtypes. This resource will improve sarcoma models, motivate studies of subtype-specific alterations, and inform investigations of genetic factors and their correlations with treatment response.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Sarcoma , Neoplasias de los Tejidos Blandos , Genómica , Humanos , Sarcoma/tratamiento farmacológico , Sarcoma/terapia , Neoplasias de los Tejidos Blandos/genética
18.
Nat Commun ; 13(1): 2144, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440124

RESUMEN

Access to clinically relevant small cell lung cancer (SCLC) tissue is limited because surgical resection is rare in metastatic SCLC. Patient-derived xenografts (PDX) and circulating tumor cell-derived xenografts (CDX) have emerged as valuable tools to characterize SCLC. Here, we present a resource of 46 extensively annotated PDX/CDX models derived from 33 patients with SCLC. We perform multi-omic analyses, using targeted tumor next-generation sequencing, RNA-sequencing, and immunohistochemistry to deconvolute the mutational landscapes, global expression profiles, and molecular subtypes of these SCLC models. SCLC subtypes characterized by transcriptional regulators, ASCL1, NEUROD1 and POU2F3 are confirmed in this cohort. A subset of SCLC clinical specimens, including matched PDX/CDX and clinical specimen pairs, confirm that the primary features and genomic and proteomic landscapes of the tumors of origin are preserved in the derivative PDX models. This resource provides a powerful system to study SCLC biology.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Xenoinjertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteómica , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Transcriptoma/genética
19.
Cancer Immunol Res ; 10(3): 303-313, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35013003

RESUMEN

Cancer immunotherapy can result in lasting tumor regression, but predictive biomarkers of treatment response remain ill-defined. Here, we performed single-cell proteomics, transcriptomics, and genomics on matched untreated and IL2 injected metastases from patients with melanoma. Lesions that completely regressed following intralesional IL2 harbored increased fractions and densities of nonproliferating CD8+ T cells lacking expression of PD-1, LAG-3, and TIM-3 (PD-1-LAG-3-TIM-3-). Untreated lesions from patients who subsequently responded with complete eradication of all tumor cells in all injected lesions (individuals referred to herein as "extreme responders") were characterized by proliferating CD8+ T cells with an exhausted phenotype (PD-1+LAG-3+TIM-3+), stromal B-cell aggregates, and expression of IFNγ and IL2 response genes. Loss of membranous MHC class I expression in tumor cells of untreated lesions was associated with resistance to IL2 therapy. We validated this finding in an independent cohort of metastatic melanoma patients treated with intralesional or systemic IL2. Our study suggests that intact tumor-cell antigen presentation is required for melanoma response to IL2 and describes a multidimensional and spatial approach to develop immuno-oncology biomarker hypotheses using routinely collected clinical biospecimens.


Asunto(s)
Interleucina-2 , Melanoma , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Inmunoterapia/métodos , Interleucina-2/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Receptor de Muerte Celular Programada 1/metabolismo
20.
Nature ; 602(7895): 156-161, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34847567

RESUMEN

CD8 T cell-mediated autoimmune diseases result from the breakdown of self-tolerance mechanisms in autoreactive CD8 T cells1. How autoimmune T cell populations arise and are sustained, and the molecular programmes defining the autoimmune T cell state, are unknown. In type 1 diabetes, ß-cell-specific CD8 T cells destroy insulin-producing ß-cells. Here we followed the fate of ß-cell-specific CD8 T cells in non-obese diabetic mice throughout the course of type 1 diabetes. We identified a stem-like autoimmune progenitor population in the pancreatic draining lymph node (pLN), which self-renews and gives rise to pLN autoimmune mediators. pLN autoimmune mediators migrate to the pancreas, where they differentiate further and destroy ß-cells. Whereas transplantation of as few as 20 autoimmune progenitors induced type 1 diabetes, as many as 100,000 pancreatic autoimmune mediators did not. Pancreatic autoimmune mediators are short-lived, and stem-like autoimmune progenitors must continuously seed the pancreas to sustain ß-cell destruction. Single-cell RNA sequencing and clonal analysis revealed that autoimmune CD8 T cells represent unique T cell differentiation states and identified features driving the transition from autoimmune progenitor to autoimmune mediator. Strategies aimed at targeting the stem-like autoimmune progenitor pool could emerge as novel and powerful immunotherapeutic interventions for type 1 diabetes.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/patología , Células Secretoras de Insulina/inmunología , Células Madre/patología , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/trasplante , Autorrenovación de las Células , Células Clonales/inmunología , Células Clonales/metabolismo , Células Clonales/patología , Modelos Animales de Enfermedad , Femenino , Glucosa-6-Fosfatasa/inmunología , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Células Secretoras de Insulina/patología , Ganglios Linfáticos/inmunología , Masculino , Ratones , Receptores de Antígenos de Linfocitos T/metabolismo , Análisis de la Célula Individual , Trasplante de Células Madre , Células Madre/inmunología , Células Madre/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA