Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Theranostics ; 14(9): 3404-3422, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948052

RESUMEN

Radiopharmaceutical therapy (RPT) is a rapidly developing field of nuclear medicine, with several RPTs already well established in the treatment of several different types of cancers. However, the current approaches to RPTs often follow a somewhat inflexible "one size fits all" paradigm, where patients are administered the same amount of radioactivity per cycle regardless of their individual characteristics and features. This approach fails to consider inter-patient variations in radiopharmacokinetics, radiation biology, and immunological factors, which can significantly impact treatment outcomes. To address this limitation, we propose the development of theranostic digital twins (TDTs) to personalize RPTs based on actual patient data. Our proposed roadmap outlines the steps needed to create and refine TDTs that can optimize radiation dose to tumors while minimizing toxicity to organs at risk. The TDT models incorporate physiologically-based radiopharmacokinetic (PBRPK) models, which are additionally linked to a radiobiological optimizer and an immunological modulator, taking into account factors that influence RPT response. By using TDT models, we envisage the ability to perform virtual clinical trials, selecting therapies towards improved treatment outcomes while minimizing risks associated with secondary effects. This framework could empower practitioners to ultimately develop tailored RPT solutions for subgroups and individual patients, thus improving the precision, accuracy, and efficacy of treatments while minimizing risks to patients. By incorporating TDT models into RPTs, we can pave the way for a new era of precision medicine in cancer treatment.


Asunto(s)
Neoplasias , Medicina de Precisión , Radiofármacos , Humanos , Medicina de Precisión/métodos , Neoplasias/terapia , Neoplasias/radioterapia , Radiofármacos/uso terapéutico , Radiofármacos/farmacocinética
2.
Front Oncol ; 14: 1320371, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559559

RESUMEN

Introduction: Computational models yield valuable insights into biological interactions not fully elucidated by experimental approaches. This study investigates an innovative spatiotemporal model for simulating the controlled release and dispersion of radiopharmaceutical therapy (RPT) using 177Lu-PSMA, a prostate-specific membrane antigen (PSMA) targeted radiopharmaceutical, within solid tumors via a dual-release implantable delivery system. Local delivery of anticancer agents presents a strategic approach to mitigate adverse effects while optimizing therapeutic outcomes. Methods: This study evaluates various factors impacting RPT efficacy, including hypoxia region extension, binding affinity, and initial drug dosage, employing a novel 3-dimensional computational model. Analysis gauges the influence of these factors on radiopharmaceutical agent concentration within the tumor microenvironment. Furthermore, spatial and temporal radiopharmaceutical distribution within both the tumor and surrounding tissue is explored. Results: Analysis indicates a significantly higher total concentration area under the curve within the tumor region compared to surrounding normal tissue. Moreover, drug distribution exhibits notably superior efficacy compared to the radiation source. Additionally, low microvascular density in extended hypoxia regions enhances drug availability, facilitating improved binding to PSMA receptors and enhancing therapeutic effectiveness. Reductions in the dissociation constant (KD) lead to heightened binding affinity and increased internalized drug concentration. Evaluation of initial radioactivities (7.1×107, 7.1×108, and 7.1×109 [Bq]) indicates that an activity of 7.1×108 [Bq] offers a favorable balance between tumor cell elimination and minimal impact on normal tissues. Discussion: These findings underscore the potential of localized radiopharmaceutical delivery strategies and emphasize the crucial role of released drugs relative to the radiation source (implant) in effective tumor treatment. Decreasing the proximity of the drug to the microvascular network and enhancing its distribution within the tumor promote a more effective therapeutic outcome. The study furnishes valuable insights for future experimental investigations and clinical trials, aiming to refine medication protocols and minimize reliance on in vivo testing.

3.
Expert Opin Drug Deliv ; 21(3): 495-511, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38396366

RESUMEN

OBJECTIVE: Breast cancer is a global health concern that demands attention. In our contribution to addressing this disease, our study focuses on investigating a wireless micro-device for intratumoral drug delivery, utilizing electrochemical actuation. Microdevices have emerged as a promising approach in this field due to their ability to enable controlled injections in various applications. METHODS: Our study is conducted within a computational framework, employing models that simulate the behavior of the microdevice and drug discharge based on the principles of the ideal gas law. Furthermore, the distribution of the drug within the tissue is simulated, considering both diffusion and convection mechanisms. To predict the therapeutic response, a pharmacodynamic model is utilized, considering the chemotherapeutic effects and cell proliferation. RESULTS: The findings demonstrate that an effective current of 3 mA, along with an initial gas volume equal to the drug volume in the microdevice, optimizes drug delivery. Microdevices with multiple injection capabilities exhibit enhanced therapeutic efficacy, effectively suppressing cell proliferation. Additionally, tumors with lower microvascular density experience higher drug concentrations in the extracellular space, resulting in significant cell death in hypoxic regions. CONCLUSIONS: Achieving an efficient therapeutic response involves considering both the characteristics of the tumor microenvironment and the frequency of injections within a specific time frame.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Proliferación Celular , Sistemas de Liberación de Medicamentos , Técnicas Electroquímicas , Microambiente Tumoral , Tecnología Inalámbrica , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Sistemas de Liberación de Medicamentos/instrumentación , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Proliferación Celular/efectos de los fármacos , Modelos Biológicos , Simulación por Computador
4.
Sci Rep ; 14(1): 1452, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228704

RESUMEN

The intratumoral injection of therapeutic agents responsive to external stimuli has gained considerable interest in treating accessible tumors due to its biocompatibility and capacity to reduce side effects. For the first time, a novel approach is explored to investigate the feasibility of utilizing low-intensity ultrasound in combination with intratumoral injection of drug-loaded magnetic nanoparticles (MNPs) to thermal necrosis and chemotherapy with the objective of maximizing tumor damage while avoiding harm to surrounding healthy tissue. In this study, a mathematical framework is proposed based on a multi-compartment model to evaluate the effects of ultrasound transducer's specifications, MNPs size and distribution, and drug release in response to the tumor microenvironment characteristics. The results indicate that while a higher injection rate may increase interstitial fluid pressure, it also simultaneously enhances the concentration of the therapeutic agent. Moreover, by increasing the power and frequency of the transducer, the acoustic pressure and intensity can be enhanced. This, in turn, increases the impact on accumulated MNPs, resulting in a rise in temperature and localized heat generation. Results have demonstrated that smaller MNPs have a lower capacity to generate heat compared to larger MNPs, primarily due to the impact of sound waves on them. It is worth noting that smaller MNPs have been observed to have enhanced diffusion, allowing them to effectively spread within the tumor. However, their smaller size also leads to rapid elimination from the extracellular space into the bloodstream. To summarize, this study demonstrated that the local injection of MNPs carrying drugs not only enables localized chemotherapy but also enhances the effectiveness of low-intensity ultrasound in inducing tissue thermal necrosis. The findings of this study can serve as a valuable and reliable resource for future research in this field and contribute to the development of personalized medicine.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Humanos , Inyecciones Intralesiones , Nanopartículas de Magnetita/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Hipertermia Inducida/métodos , Necrosis , Microambiente Tumoral
5.
Cancers (Basel) ; 15(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37894436

RESUMEN

Intraperitoneal (IP) chemotherapy is a promising treatment approach for patients diagnosed with peritoneal carcinomatosis, allowing the direct delivery of therapeutic agents to the tumor site within the abdominal cavity. Nevertheless, limited drug penetration into the tumor remains a primary drawback of this method. The process of delivering drugs to the tumor entails numerous complications, primarily stemming from the specific pathophysiology of the tumor. Investigating drug delivery during IP chemotherapy and studying the parameters affecting it are challenging due to the limitations of experimental studies. In contrast, mathematical modeling, with its capabilities such as enabling single-parameter studies, and cost and time efficiency, emerges as a potent tool for this purpose. In this study, we developed a numerical model to investigate IP chemotherapy by incorporating an actual image of a tumor with heterogeneous vasculature. The tumor's geometry is reconstructed using image processing techniques. The model also incorporates drug binding and uptake by cancer cells. After 60 min of IP treatment with Doxorubicin, the area under the curve (AUC) of the average free drug concentration versus time curve, serving as an indicator of drug availability to the tumor, reached 295.18 mol·m-3·s-1. Additionally, the half-width parameter W1/2, which reflects drug penetration into the tumor, ranged from 0.11 to 0.14 mm. Furthermore, the treatment resulted in a fraction of killed cells reaching 20.4% by the end of the procedure. Analyzing the spatial distribution of interstitial fluid velocity, pressure, and drug concentration in the tumor revealed that the heterogeneous distribution of tumor vasculature influences the drug delivery process. Our findings underscore the significance of considering the specific vascular network of a tumor when modeling intraperitoneal chemotherapy. The proposed methodology holds promise for application in patient-specific studies.

7.
Small ; 18(42): e2203169, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36026569

RESUMEN

Nowadays, artificial intelligence (AI) creates numerous promising opportunities in the life sciences. AI methods can be significantly advantageous for analyzing the massive datasets provided by biotechnology systems for biological and biomedical applications. Microfluidics, with the developments in controlled reaction chambers, high-throughput arrays, and positioning systems, generate big data that is not necessarily analyzed successfully. Integrating AI and microfluidics can pave the way for both experimental and analytical throughputs in biotechnology research. Microfluidics enhances the experimental methods and reduces the cost and scale, while AI methods significantly improve the analysis of huge datasets obtained from high-throughput and multiplexed microfluidics. This review briefly presents a survey of the role of AI and microfluidics in biotechnology. Also, the incorporation of AI with microfluidics is comprehensively investigated. Specifically, recent studies that perform flow cytometry cell classification, cell isolation, and a combination of them by gaining from both AI methods and microfluidic techniques are covered. Despite all current challenges, various fields of biotechnology can be remarkably affected by the combination of AI and microfluidic technologies. Some of these fields include point-of-care systems, precision, personalized medicine, regenerative medicine, prognostics, diagnostics, and treatment of oncology and non-oncology-related diseases.


Asunto(s)
Inteligencia Artificial , Dispositivos Laboratorio en un Chip , Microfluídica/métodos , Medicina de Precisión , Sistemas de Atención de Punto
8.
Cancers (Basel) ; 14(11)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35681767

RESUMEN

No previous works have attempted to combine generative adversarial network (GAN) architectures and the biomathematical modeling of positron emission tomography (PET) radiotracer uptake in tumors to generate extra training samples. Here, we developed a novel computational model to produce synthetic 18F-fluorodeoxyglucose (18F-FDG) PET images of solid tumors in different stages of progression and angiogenesis. First, a comprehensive biomathematical model is employed for creating tumor-induced angiogenesis, intravascular and extravascular fluid flow, as well as modeling of the transport phenomena and reaction processes of 18F-FDG in a tumor microenvironment. Then, a deep convolutional GAN (DCGAN) model is employed for producing synthetic PET images using 170 input images of 18F-FDG uptake in each of 10 different tumor microvascular networks. The interstitial fluid parameters and spatiotemporal distribution of 18F-FDG uptake in tumor and healthy tissues have been compared against previously published numerical and experimental studies, indicating the accuracy of the model. The structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) of the generated PET sample and the experimental one are 0.72 and 28.53, respectively. Our results demonstrate that a combination of biomathematical modeling and GAN-based augmentation models provides a robust framework for the non-invasive and accurate generation of synthetic PET images of solid tumors in different stages.

9.
Comput Biol Med ; 146: 105511, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35490641

RESUMEN

Accurate simulation of tumor growth during chemotherapy has significant potential to alleviate the risk of unknown side effects and optimize clinical trials. In this study, a 3D simulation model encompassing angiogenesis and tumor growth was developed to identify the vascular endothelial growth factor (VEGF) concentration and visualize the formation of a microvascular network. Accordingly, three anti-angiogenic drugs (Bevacizumab, Ranibizumab, and Brolucizumab) at different concentrations were evaluated in terms of their efficacy. Moreover, comprehensive mechanisms of tumor cell proliferation and endothelial cell angiogenesis are proposed to provide accurate predictions for optimizing drug treatments. The evaluation of simulation output data can extract additional features such as tumor volume, tumor cell number, and the length of new vessels using machine learning (ML) techniques. These were investigated to examine the different stages of tumor growth and the efficacy of different drugs. The results indicate that brolucizuman has the best efficacy by decreasing the length of sprouting new vessels by up to 16%. The optimal concentration was obtained at 10 mol m-3 with an effectiveness percentage of 42% at 20 days post-treatment. Furthermore, by performing comparative analysis, the best ML method (matching the performance of the reference simulations) was identified as reinforcement learning with a 3.3% mean absolute error (MAE) and an average accuracy of 94.3%.


Asunto(s)
Inhibidores de la Angiogénesis , Neoplasias , Inhibidores de la Angiogénesis/efectos adversos , Simulación por Computador , Humanos , Aprendizaje Automático , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Ranibizumab/efectos adversos , Factor A de Crecimiento Endotelial Vascular
10.
Cancers (Basel) ; 14(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35406569

RESUMEN

An efficient and selective drug delivery vehicle for cancer cells can remarkably improve therapeutic approaches. In this study, we focused on the synthesis and characterization of magnetic Ni1-xCoxFe2O4 nanoparticles (NPs) coated with two layers of methionine and polyethylene glycol to increase the loading capacity and lower toxicity to serve as an efficient drug carrier. Ni1-xCoxFe2O4@Methionine@PEG NPs were synthesized by a reflux method then characterized by FTIR, XRD, FESEM, TEM, and VSM. Naproxen was used as a model drug and its loading and release in the vehicles were evaluated. The results for loading efficiency showed 1 mg of Ni1-xCoxFe2O4@Methionine@PEG NPs could load 0.51 mg of the naproxen. Interestingly, Ni1-xCoxFe2O4@Methionine@PEG showed a gradual release of the drug, achieving a time-release up to 5 days, and demonstrated that a pH 5 release of the drug was about 20% higher than Ni1-xCoxFe2O4@Methionine NPs, which could enhance the intracellular drug release following endocytosis. At pH 7.4, the release of the drug was slower than Ni1-xCoxFe2O4@Methionine NPs; demonstrating the potential to minimize the adverse effects of anticancer drugs on normal tissues. Moreover, naproxen loaded onto the Ni1-xCoxFe2O4@Methionine@PEG NPs for breast cancer cell lines MDA-MB-231 and MCF-7 showed more significant cell death than the free drug, which was measured by an MTT assay. When comparing both cancer cells, we demonstrated that naproxen loaded onto the Ni1-xCoxFe2O4@Methionine@PEG NPs exhibited greater cell death effects on the MCF-7 cells compared with the MDA-MB-231 cells. The results of the hemolysis test also showed good hemocompatibility. The results indicated that the prepared magnetic nanocarrier could be suitable for controlled anticancer drug delivery.

11.
Cell Prolif ; 55(3): e13187, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35132721

RESUMEN

OBJECTIVES: Computational modeling of biological systems is a powerful tool to clarify diverse processes contributing to cancer. The aim is to clarify the complex biochemical and mechanical interactions between cells, the relevance of intracellular signaling pathways in tumor progression and related events to the cancer treatments, which are largely ignored in previous studies. MATERIALS AND METHODS: A three-dimensional multiscale cell-based model is developed, covering multiple time and spatial scales, including intracellular, cellular, and extracellular processes. The model generates a realistic representation of the processes involved from an implementation of the signaling transduction network. RESULTS: Considering a benign tumor development, results are in good agreement with the experimental ones, which identify three different phases in tumor growth. Simulating tumor vascular growth, results predict a highly vascularized tumor morphology in a lobulated form, a consequence of cells' motile behavior. A novel systematic study of chemotherapy intervention, in combination with targeted therapy, is presented to address the capability of the model to evaluate typical clinical protocols. The model also performs a dose comparison study in order to optimize treatment efficacy and surveys the effect of chemotherapy initiation delays and different regimens. CONCLUSIONS: Results not only provide detailed insights into tumor progression, but also support suggestions for clinical implementation. This is a major step toward the goal of predicting the effects of not only traditional chemotherapy but also tumor-targeted therapies.


Asunto(s)
Proliferación Celular/fisiología , Simulación por Computador , Neoplasias/patología , Neovascularización Patológica/patología , Humanos , Modelos Biológicos , Neoplasias/tratamiento farmacológico , Transducción de Señal/fisiología
12.
Front Oncol ; 12: 1062592, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591527

RESUMEN

This work emphasizes that patient data, including images, are not operable (clinically), but that digital twins are. Based on the former, the latter can be created. Subsequently, virtual clinical operations can be performed towards selection of optimal therapies. Digital twins are beginning to emerge in the field of medicine. We suggest that theranostic digital twins (TDTs) are amongst the most natural and feasible flavors of digitals twins. We elaborate on the importance of TDTs in a future where 'one-size-fits-all' therapeutic schemes, as prevalent nowadays, are transcended in radiopharmaceutical therapies (RPTs). Personalized RPTs will be deployed, including optimized intervention parameters. Examples include optimization of injected radioactivities, sites of injection, injection intervals and profiles, and combination therapies. Multi-modal multi-scale images, combined with other data and aided by artificial intelligence (AI) techniques, will be utilized towards routine digital twinning of our patients, and will enable improved deliveries of RPTs and overall healthcare.

13.
Sci Rep ; 11(1): 19539, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599207

RESUMEN

For the first time, inspired by magnetic resonance imaging-guidance high intensity focused ultrasound (MR-HIFU) technology, i.e., medication therapy and thermal ablation in one session, in a preclinical setting based on a developed mathematical model, the performance of doxorubicin (Dox) and its encapsulation have been investigated in this study. Five different treatment methods, that combine medication therapy with mild hyperthermia by MRI contrast ([Formula: see text]) and thermal ablation via HIFU, are investigated in detail. A comparison between classical chemotherapy and thermochemistry shows that temperature can improve the therapeutic outcome by stimulating biological properties. On the other hand, the intravascular release of ThermoDox increases the concentration of free drug by 2.6 times compared to classical chemotherapy. The transport of drug in interstitium relies mainly on the diffusion mechanism to be able to penetrate deeper and reach the cancer cells in the inner regions of the tumor. Due to the low drug penetration into the tumor center, thermal ablation has been used for necrosis of the central areas before thermochemotherapy and ThermoDox therapy. Perfusion of the region around the necrotic zone is found to be damaged, while cells in the region are alive and not affected by medication therapy; so, there is a risk of tumor recurrence. Therefore, it is recommended that ablation be performed after the medication therapy. Our model describes a comprehensive assessment of MR-HIFU technology, taking into account many effective details, which can be a reliable guide towards the optimal use of drug delivery systems.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hipertermia Inducida/métodos , Campos Magnéticos , Modelos Teóricos , Neoplasias/terapia , Ondas Ultrasónicas , Antineoplásicos/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Terapia Combinada , Sistemas de Liberación de Medicamentos/métodos , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Humanos , Neoplasias/diagnóstico , Neoplasias/mortalidad , Pronóstico , Reproducibilidad de los Resultados , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos
14.
Proc Inst Mech Eng H ; 235(11): 1335-1355, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34247529

RESUMEN

Uncontrolled proliferation of cells in a tissue caused by genetic mutations inside a cell is referred to as a tumor. A tumor which grows rapidly encounters a barrier when it grows to a certain size in presence of preexisting vasculature. This is the time when it has to find a way to go on the growth. The tumor starts to secrete tumor angiogenic factors (TAFs) and stimulate preexisting vessels to grow new sprouts. These new sprouts will find their way to the tumor in the extracellular matrix (ECM) by the gradient of TAF. As these new capillaries anastomose and reach tumor, fresh oxygen is available for the tumor and it will reinitiate the growth. Number of initial sprouts, distance of initial tumor cells from the vessel(s) and initial density of the tumor at the time of sprout formation are questions which are to be investigated. In the present study, the aim is to find the response of tumor cells and vessels to the reciprocal effects of each other in different circumstances in the tissue. Together with a mathematical formulation, a radial basis function (RBF) neural network is established to predict the number of tumor cells at different circumstances including size and distance of initial tumors from the parent vessel. A final formulation is given for the final number of tumor cells as a function of initial tumor size and distance between a parent vessel and a tumor. Results of this simulation demonstrate that, increasing the distance between a tumor and a parent vessel decreases the number of final tumor cells. Specially, this decrement becomes faster beyond a certain distance. Moreover, initial tumors in bigger domains must become much bigger before inducing angiogenesis which makes it harder for them to survive.


Asunto(s)
Neoplasias , Microambiente Tumoral , Simulación por Computador , Humanos , Modelos Biológicos , Redes Neurales de la Computación , Carga Tumoral
15.
Front Oncol ; 11: 661123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295809

RESUMEN

Cancer stands out as one of the fatal diseases people are facing all the time. Each year, a countless number of people die because of the late diagnosis of cancer or wrong treatments. Glioma, one of the most common primary brain tumors, has different aggressiveness and sub-regions, which can affect the risk of disease. Although prediction of overall survival based on multimodal magnetic resonance imaging (MRI) is challenging, in this study, we assess if and how location-based features of tumors can affect overall survival prediction. This approach is evaluated independently and in combination with radiomic features. The process is carried out on a data set entailing MRI images of patients with glioblastoma. To assess the impact of resection status, the data set is divided into two groups, patients were reported as gross total resection and unknown resection status. Then, different machine learning algorithms were used to evaluate how location features are linked with overall survival. Results from regression models indicate that location-based features have considerable effects on the patients' overall survival independently. Additionally, classifier models show an improvement in prediction accuracy by the addition of location-based features to radiomic features.

16.
Cancers (Basel) ; 13(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069606

RESUMEN

Application of drugs in high doses has been required due to the limitations of no specificity, short circulation half-lives, as well as low bioavailability and solubility. Higher toxicity is the result of high dosage administration of drug molecules that increase the side effects of the drugs. Recently, nanomedicine, that is the utilization of nanotechnology in healthcare with clinical applications, has made many advancements in the areas of cancer diagnosis and therapy. To overcome the challenge of patient-specificity as well as time- and dose-dependency of drug administration, artificial intelligence (AI) can be significantly beneficial for optimization of nanomedicine and combinatorial nanotherapy. AI has become a tool for researchers to manage complicated and big data, ranging from achieving complementary results to routine statistical analyses. AI enhances the prediction precision of treatment impact in cancer patients and specify estimation outcomes. Application of AI in nanotechnology leads to a new field of study, i.e., nanoinformatics. Besides, AI can be coupled with nanorobots, as an emerging technology, to develop targeted drug delivery systems. Furthermore, by the advancements in the nanomedicine field, AI-based combination therapy can facilitate the understanding of diagnosis and therapy of the cancer patients. The main objectives of this review are to discuss the current developments, possibilities, and future visions in naoinformatics, for providing more effective treatment for cancer patients.

17.
Comput Methods Programs Biomed ; 193: 105443, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32311510

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is the most frequent primary brain tumor in adults and Temozolomide (TMZ) is an effective chemotherapeutic agent for its treatment. In Silico models of GBM growth provide an appropriate foundation for analysis and comparison of different regimens. We propose a mathematical frame for patient specific design of optimal chemotherapy regimens for GBM patients. METHODS: The proposed frame includes online interaction of a virtual GBM with an optimizing agent. Spatiotemporal dynamics of GBM growth and its response to TMZ are simulated with a three dimensional hybrid cellular automaton. Q learning is tailored to the virtual GBM for treatment optimization aimed at minimizing tumor size at the end of treatment course. Q learning consists of a learning agent that interacts with the virtual GBM. System state is affected by the agent decisions and the obtained rewards guide Q learning to the optimal schedule. RESULTS: Computational results confirm that the optimal chemotherapy schedule depends on some patient specific parameters including body weight, tumor size and its position in the brain. Furthermore, the algorithm is used for scheduling 2100 mg of TMZ on a virtual GBM and the obtained schedule is to administer150 mg of TMZ every other day. The obtained schedule is compared to the standard 7/14 regimen and the results show that it is superior to the 7/14 regimen in minimizing tumor size. CONCLUSION: The proposed frame is an appropriate decision support system for patient specific design of TMZ administration regimens on GBM patients. Also, since the obtained optimal schedule outperforms the standard 7/14 regimen, it is worthy of further clinical testing.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Adulto , Antineoplásicos/uso terapéutico , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Humanos , Temozolomida/uso terapéutico
18.
Magn Reson Imaging ; 68: 121-126, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31911200

RESUMEN

Glioblastoma Multiforme is the most common and most aggressive type of brain tumors. Although accurate prediction of Glioblastoma borders and shape is absolutely essential for neurosurgeons, there are not many in silico platforms that can make such predictions. In the current study, an automatic patient-specific simulation of Glioblastoma growth would be described. A finite element approach is used to analyze the magnetic resonance images from patients in the early stages of their tumors. For segmentation of the tumor, the Support Vector Machine (SVM) method, which is an automatic segmentation algorithm, is used. Using in situ and in vivo data, the main parameters of tumor prediction and growth are estimated with high precision in proliferation-invasion partial differential equation, using the genetic algorithm optimization method. The results show that for a C57BL mouse, the differences between the area and perimeter of in vivo test and simulation prediction data, as the objective function, are 3.7% and 17.4%, respectively.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Simulación por Computador , Glioblastoma/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Animales , Encéfalo/patología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/patología , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Máquina de Vectores de Soporte
19.
Microcirculation ; 27(1): e12584, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31390104

RESUMEN

OBJECTIVES: The aim of this study was to investigate the response of a tumor and parent vessels to stimulating factors in the tumor microenvironment in different configurations. How a tumor grows and induces angiogenesis in different distances of a parent vessel is investigated. Moreover, interstitial fluid pressure and its effects on tumor cell phenotype are considered in the model. METHODS: A multiscale continuum-discrete model of a vascular tumor is utilized to simulate the growth of a cluster of tumor cells positioned in different distances of parent vessels. An agent-based probabilistic angiogenesis model is coupled to a discrete tumor model to simulate branching, anastomosis, blood flow, wall shear stress, and interstitial tumor pressure in which tumor cells are divided to necrotic, hypoxic, and proliferative. RESULTS: Starting the simulations from 9 initial tumor cells, the model proved that tumors grow to a certain size and also reach to a certain distance before being able to induce sprouting. For tumors placed 2 and 2.5 mm away from a parent vessel, initiation of angiogenesis is delayed significantly in comparison with closer distances. For the initial cluster positioned in a distance of 2.5 mm away, first sprout is seen after 47 days. Moreover, dendritic shape of the tumor is seen prior to angiogenesis which is a sign of cells being starved and wandered in the domain to reach the oxygen source. The trend of tumor growth obeys power law function which aligns with the experimental results. DISCUSSION: The mathematical model revealed the importance of geometry and position of an initial tumor cluster in determining the behavior and final architecture of a vascular tumor. As a tumor cell appears in farther distances from a parent vessel, duration of its growth and inducing angiogenesis becomes longer and the chance of suppressing the tumor in the initial days of growth is higher. Also, the importance of angiogenesis in making tumors devastating is again corroborated by mathematical models.


Asunto(s)
Modelos Cardiovasculares , Neovascularización Patológica/fisiopatología , Neoplasias Vasculares , Animales , Humanos , Neoplasias Vasculares/irrigación sanguínea , Neoplasias Vasculares/fisiopatología
20.
Ann Nucl Med ; 31(2): 109-124, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27921285

RESUMEN

OBJECTIVE: Distribution of PET tracer uptake is elaborately modeled via a general equation used for solute transport modeling. This model can be used to incorporate various transport parameters of a solid tumor such as hydraulic conductivity of the microvessel wall, transvascular permeability as well as interstitial space parameters. This is especially significant because tracer delivery and drug delivery to solid tumors are determined by similar underlying tumor transport phenomena, and quantifying the former can enable enhanced prediction of the latter. METHODS: We focused on the commonly utilized FDG PET tracer. First, based on a mathematical model of angiogenesis, the capillary network of a solid tumor and normal tissues around it were generated. The coupling mathematical method, which simultaneously solves for blood flow in the capillary network as well as fluid flow in the interstitium, is used to calculate pressure and velocity distributions. Subsequently, a comprehensive spatiotemporal distribution model (SDM) is applied to accurately model distribution of PET tracer uptake, specifically FDG in this work, within solid tumors. RESULTS: The different transport mechanisms, namely convention and diffusion from vessel to tissue and in tissue, are elaborately calculated across the domain of interest and effect of each parameter on tracer distribution is investigated. The results show the convection terms to have negligible effect on tracer transport and the SDM can be solved after eliminating these terms. CONCLUSION: The proposed framework of spatiotemporal modeling for PET tracers can be utilized to comprehensively assess the impact of various parameters on the spatiotemporal distribution of PET tracers.


Asunto(s)
Modelos Biológicos , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones , Radiofármacos/farmacocinética , Algoritmos , Simulación por Computador , Difusión , Fluorodesoxiglucosa F18/farmacocinética , Humanos , Neoplasias/fisiopatología , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/fisiopatología , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA