Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Rep ; 11(1): 19602, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599254

RESUMEN

Colorectal cancer (CRC) is one of the most deadly and commonly diagnosed tumors worldwide. Several genes are involved in its development and progression. The most frequent mutations concern APC, KRAS, SMAD4, and TP53 genes, suggesting that CRC relies on the concomitant alteration of the related pathways. However, with classic molecular approaches, it is not easy to simultaneously analyze the interconnections between these pathways. To overcome this limitation, recently these pathways have been included in a huge chemical reaction network (CRN) describing how information sensed from the environment by growth factors is processed by healthy colorectal cells. Starting from this CRN, we propose a computational model which simulates the effects induced by single or multiple concurrent mutations on the global signaling network. The model has been tested in three scenarios. First, we have quantified the changes induced on the concentration of the proteins of the network by a mutation in APC, KRAS, SMAD4, or TP53. Second, we have computed the changes in the concentration of p53 induced by up to two concurrent mutations affecting proteins upstreams in the network. Third, we have considered a mutated cell affected by a gain of function of KRAS, and we have simulated the action of Dabrafenib, showing that the proposed model can be used to determine the most effective amount of drug to be delivered to the cell. In general, the proposed approach displays several advantages, in that it allows to quantify the alteration in the concentration of the proteins resulting from a single or multiple given mutations. Moreover, simulations of the global signaling network of CRC may be used to identify new therapeutic targets, or to disclose unexpected interactions between the involved pathways.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Modelos Teóricos , Mutación , Línea Celular Tumoral , Mutación con Ganancia de Función , Humanos , Mutación con Pérdida de Función , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
2.
Metabolites ; 11(8)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34436460

RESUMEN

Compartmental analysis is the mathematical framework for the modelling of tracer kinetics in dynamical Positron Emission Tomography. This paper provides a review of how compartmental models are constructed and numerically optimized. Specific focus is given on the identifiability and sensitivity issues and on the impact of complex physiological conditions on the mathematical properties of the models.

3.
PLoS One ; 16(6): e0252422, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34061902

RESUMEN

A recent result obtained by means of an in vitro experiment with cancer cultured cells has configured the endoplasmic reticulum as the preferential site for the accumulation of 2-deoxy-2-[18F]fluoro-D-glucose (FDG). Such a result is coherent with cell biochemistry and is made more significant by the fact that the reticular accumulation rate of FDG is dependent upon extracellular glucose availability. The objective of the present paper is to confirm in vivo the result obtained in vitro concerning the crucial role played by the endoplasmic reticulum in FDG cancer metabolism. This study utilizes data acquired by means of a Positron Emission Tomography scanner for small animals in the case of CT26 models of cancer tissues. The recorded concentration images are interpreted within the framework of a three-compartment model for FDG kinetics, which explicitly assumes that the endoplasmic reticulum is the dephosphorylation site for FDG in cancer cells. The numerical reduction of the compartmental model is performed by means of a regularized Gauss-Newton algorithm for numerical optimization. This analysis shows that the proposed three-compartment model equals the performance of a standard Sokoloff's two-compartment system in fitting the data. However, it provides estimates of some of the parameters, such as the phosphorylation rate of FDG, more consistent with prior biochemical information. These results are made more solid from a computational viewpoint by proving the identifiability and by performing a sensitivity analysis of the proposed compartment model.


Asunto(s)
Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/metabolismo , Retículo Endoplásmico/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Modelos Biológicos , Algoritmos , Animales , Línea Celular Tumoral , Neoplasias del Colon/patología , Modelos Animales de Enfermedad , Femenino , Glucosa/metabolismo , Cinética , Masculino , Ratones , Ratones Endogámicos BALB C , Fosforilación , Tomografía de Emisión de Positrones/métodos , Reproducibilidad de los Resultados
4.
J Math Biol ; 82(6): 55, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33945019

RESUMEN

This paper studies a system of Ordinary Differential Equations modeling a chemical reaction network and derives from it a simulation tool mimicking Loss of Function and Gain of Function mutations found in cancer cells. More specifically, from a theoretical perspective, our approach focuses on the determination of moiety conservation laws for the system and their relation with the corresponding stoichiometric surfaces. Then we show that Loss of Function mutations can be implemented in the model via modification of the initial conditions in the system, while Gain of Function mutations can be implemented by eliminating specific reactions. Finally, the model is utilized to examine in detail the G1-S phase of a colorectal cancer cell.


Asunto(s)
Neoplasias Colorrectales , Mutación con Pérdida de Función , Modelos Biológicos , Neoplasias Colorrectales/patología , Simulación por Computador , Humanos , Cinética
5.
Front Immunol ; 12: 799455, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069581

RESUMEN

In the last decade, the treatment of non-small cell lung cancer (NSCLC) has been revolutionized by the introduction of immune checkpoint inhibitors (ICI) directed against programmed death protein 1 (PD-1) and its ligand (PD-L1), or cytotoxic T lymphocyte antigen 4 (CTLA-4). In spite of these improvements, some patients do not achieve any benefit from ICI, and inevitably develop resistance to therapy over time. Tumor microenvironment (TME) might influence response to immunotherapy due to its prominent role in the multiple interactions between neoplastic cells and the immune system. Studies investigating lung cancer from the perspective of TME pointed out a complex scenario where tumor angiogenesis, soluble factors, immune suppressive/regulatory elements and cells composing TME itself participate to tumor growth. In this review, we point out the current state of knowledge involving the relationship between tumor cells and the components of TME in NSCLC as well as their interactions with immunotherapy providing an update on novel predictors of benefit from currently employed ICI or new therapeutic targets of investigational agents. In first place, increasing evidence suggests that TME might represent a promising biomarker of sensitivity to ICI, based on the presence of immune-modulating cells, such as Treg, myeloid derived suppressor cells, and tumor associated macrophages, which are known to induce an immunosuppressive environment, poorly responsive to ICI. Consequently, multiple clinical studies have been designed to influence TME towards a pro-immunogenic state and subsequently improve the activity of ICI. Currently, the mostly employed approach relies on the association of "classic" ICI targeting PD-1/PD-L1 and novel agents directed on molecules, such as LAG-3 and TIM-3. To date, some trials have already shown promising results, while a multitude of prospective studies are ongoing, and their results might significantly influence the future approach to cancer immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/inmunología , Antígeno CTLA-4/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Inmunoterapia/métodos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Evaluación de Resultado en la Atención de Salud/métodos , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA