Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Physiol Biochem ; 216: 109112, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39265240

RESUMEN

APETALA2/ethylene-responsive (AP2/ERF) plays crucial roles in resisting diverse stresses and in regulating plant growth and development. However, little is known regarding the structure and function of the AP2/ERF genes in pearl millet (Pennisetum glaucum). The AP2/ERF gene family may be involved in the development and maintenance of P. glaucum resilience to abiotic stresses, central to its role as a vital forage and cereal crop. In this study, PgAP2/ERF family members were identified and comprehensive bioinformatics analyses were performed, including determination of phylogenetic relationships, gene structures, conserved motifs, chromosomal localization, gene duplication, expression pattern, protein interaction network, and functional characterization of PgRAV_01 (Related to ABI3/VP1). In total, 78 PgAP2/ERF members were identified in the P. glaucum genome and classified into five subfamilies: AP2, ERF, DREB, RAV, and soloist. Members within the same clade of the PgAP2/ERF family showed similar gene structures and motif compositions. Six duplication events were identified in the PgAP2/ERF family; calculation of Ka/Ks values showed that purification selection dominated the evolution of PgAP2/ERFs. Subsequently, a potential interaction network of PgAP2/ERFs was generated to predict the interaction relationships. Additionally, abiotic stress expression analysis showed that most PgAP2/ERFs were induced in response to drought and heat stresses. Furthermore, overexpression of PgRAV_01 negatively regulated drought tolerance in Nicotiana benthamiana by reducing its antioxidant capacity and osmotic adjustment. Taken together, these results provide valuable insights into the characteristics and functions of PgAP2/ERF genes, with implications for abiotic stress tolerance, and will ultimately contribute to the genetic improvement of cereal crop breeding.

2.
Front Plant Sci ; 15: 1400301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135652

RESUMEN

Introduction: Members of the plant-specific B3 transcription factor superfamily play crucial roles in various plant growth and developmental processes. Despite numerous valuable studies on B3 genes in other species, little is known about the B3 superfamily in pearl millet. Methods and results: Here, through comparative genomic analysis, we identified 70 B3 proteins in pearl millet and categorized them into four subfamilies based on phylogenetic affiliations: ARF, RAV, LAV, and REM. We also mapped the chromosomal locations of these proteins and analyzed their gene structures, conserved motifs, and gene duplication events, providing new insights into their potential functional interactions. Using transcriptomic sequencing and real-time quantitative PCR, we determined that most PgB3 genes exhibit upregulated expression under drought and high-temperature stresses, indicating their involvement in stress response regulation. To delve deeper into the abiotic stress roles of the B3 family, we focused on a specific gene within the RAV subfamily, PgRAV-04, cloning it and overexpressing it in tobacco. PgRAV-04 overexpression led to increased drought sensitivity in the transgenic plants due to decreased proline levels and peroxidase activity. Discussion: This study not only adds to the existing body of knowledge on the B3 family's characteristics but also advances our functional understanding of the PgB3 genes in pearl millet, reinforcing the significance of these factors in stress adaptation mechanisms.

3.
Viruses ; 15(8)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37632087

RESUMEN

Enterovirus G (EV-G) is prevalent in pig populations worldwide, and a total of 20 genotypes (G1 to G20) have been confirmed. Recently, recombinant EV-Gs carrying the papain-like cysteine protease (PLCP) gene of porcine torovirus have been isolated or detected, while their pathogenicity is poorly understood. In this study, an EV-G17-PLCP strain, 'EV-G/YN23/2022', was isolated from the feces of pigs with diarrhea, and the virus replicated robustly in numerous cell lines. The isolate showed the highest complete genome nucleotide (87.5%) and polyprotein amino acid (96.6%) identity in relation to the G17 strain 'IShi-Ya4' (LC549655), and a possible recombination event was detected at the 708 and 3383 positions in the EV-G/YN23/2022 genome. EV-G/YN23/2022 was nonlethal to piglets, but mild diarrhea, transient fever, typical skin lesions, and weight gain deceleration were observed. The virus replicated efficiently in multiple organs, and the pathological lesions were mainly located in the small intestine. All the challenged piglets showed seroconversion for EV-G/YN23/2022 at 6 to 9 days post-inoculation (dpi), and the neutralization antibody peaked at 15 dpi. The mRNA expression levels of IL-6, IL-18, IFN-α, IFN-ß, and ISG-15 in the peripheral blood mononuclear cells (PBMCs) were significantly up-regulated during viral infection. This is the first documentation of the isolation and pathogenicity evaluation of the EV-G17-PLCP strain in China. The results may advance our understanding of the evolution characteristics and pathogenesis of EV-G-PLCP.


Asunto(s)
Enterovirus Porcinos , Torovirus , Animales , Porcinos , Papaína/genética , Leucocitos Mononucleares , Virulencia , China , Calpaína , Diarrea
4.
Front Plant Sci ; 13: 884456, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620690

RESUMEN

Elephant grass (Pennisetum purpureum) is a fast-growing and low-nutrient demand plant that is widely used as a forage grass and potential energy crop in tropical and subtropical regions of Asia, Africa, and the United States. Transgenic tobacco with the PpCCoAOMT gene from Pennisetum purpureum produces high lignin content that is associated with drought tolerance in relation to lower accumulation of reactive oxygen species (ROS), along with higher antioxidant enzyme activities and osmotic adjustment. In this study, transgenic tobacco plants revealed no obvious cost to plant growth when expressing the PpCCoAOMT gene. Metabolomic studies demonstrated that tobacco plants tolerant to drought stress accumulated flavonoids under normal and drought conditions, which likely explains the observed tolerance phenotype in wild-type tobacco. Our results suggest that plants overexpressing PpCCoAOMT were better able to cope with water deficit than were wild-type controls; metabolic flux was redirected within primary and specialized metabolism to induce metabolites related to defense to drought stress. These results could help to develop drought-resistant plants for agriculture in the future.

5.
Plant Physiol Biochem ; 129: 357-367, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29940472

RESUMEN

Little is known about the cross talk between the lignin biosynthesis gene promoters and the regulatory proteins that modulate molecular signaling and respond to various stresses. In this study, we characterized the promoter region of the lignin biosynthesis pathway cinnamyl alcohol dehydrogenase (CAD) gene in elephant grass, Pennisetum purpureum. Quantification of the transcript levels of the PpCAD promoter revealed it is preferentially expressed in vascular tissue, especially xylem. Histochemical and fluorometric assays confirmed the vascular-preferential expression of the PpCAD promoter, as the highest ß-glucuronidase (GUS) activity was found in the basal stem in transgenic tobacco plants expressing a 1154-bp PpCAD promoter-GUS fusion construct. Moreover, 5'-deleted PpCAD promoter analyses showed that the 1154-bp PpCAD promoter fragment had the highest transcriptional activity, whereas the 2054-bp fragment had multifarious inducible activity responding to gibberellin (GA), methyl jasmonate (MeJA), abscisic acid (ABA), and wounding. The regions from -248 to -243 bp and -1416 to -1411 bp contained W-box cis-elements, which were detected by electrophoretic mobility shift assay (EMSA). The binding effects of the GA-responsive elements (from -561 to -555 bp and -1077 to -1071 bp), MeJA-responsive element (from -1146 to -1142 bp), and the ABA-responsive cis-element (from -1879 to -1874 bp) were also validated by EMSA. Based on our results, we suggest that lignin deposition associated with PpCAD promoter activity adapts to the environment through molecular signaling involving GA, MeJA, and ABA.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Nicotiana/genética , Pennisetum/genética , Oxidorreductasas de Alcohol/metabolismo , Expresión Génica/genética , Lignina/metabolismo , Pennisetum/metabolismo , Floema/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Nicotiana/metabolismo , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA