Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
World J Clin Oncol ; 15(2): 208-242, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38455130

RESUMEN

BACKGROUND: Breast cancer is a multifaceted and formidable disease with profound public health implications. Cell demise mechanisms play a pivotal role in breast cancer pathogenesis, with ATP-triggered cell death attracting mounting interest for its unique specificity and potential therapeutic pertinence. AIM: To investigate the impact of ATP-induced cell death (AICD) on breast cancer, enhancing our understanding of its mechanism. METHODS: The foundational genes orchestrating AICD mechanisms were extracted from the literature, underpinning the establishment of a prognostic model. Simultaneously, a microRNA (miRNA) prognostic model was constructed that mirrored the gene-based prognostic model. Distinctions between high- and low-risk cohorts within mRNA and miRNA characteristic models were scrutinized, with the aim of delineating common influence mechanisms, substantiated through enrichment analysis and immune infiltration assessment. RESULTS: The mRNA prognostic model in this study encompassed four specific mRNAs: P2X purinoceptor 4, pannexin 1, caspase 7, and cyclin 2. The miRNA prognostic model integrated four pivotal miRNAs: hsa-miR-615-3p, hsa-miR-519b-3p, hsa-miR-342-3p, and hsa-miR-324-3p. B cells, CD4+ T cells, CD8+ T cells, endothelial cells, and macrophages exhibited inverse correlations with risk scores across all breast cancer subtypes. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis revealed that genes differentially expressed in response to mRNA risk scores significantly enriched 25 signaling pathways, while miRNA risk scores significantly enriched 29 signaling pathways, with 16 pathways being jointly enriched. CONCLUSION: Of paramount significance, distinct mRNA and miRNA signature models were devised tailored to AICD, both potentially autonomous prognostic factors. This study's elucidation of the molecular underpinnings of AICD in breast cancer enhances the arsenal of potential therapeutic tools, offering an unparalleled window for innovative interventions. Essentially, this paper reveals the hitherto enigmatic link between AICD and breast cancer, potentially leading to revolutionary progress in personalized oncology.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36686973

RESUMEN

Aim: We explored the molecular pathway and material basis of GuBen-ZengGu granules (GBZGG) in treating osteoporosis using network pharmacology and animal experiments. Methods: The effective active components and potential targets of GBZGG were obtained from the TCMSP database and BATMAN-TCM database. Disease-related genes were obtained from GeneCard, NCBI, and DisGeNET. Next, a protein interaction network was established using the STRING database, and core genes were screened using the MCODE module. Cytoscape 3.8.0 was used to construct the network of component-disease-pathway-target, and KEGG pathway enrichment analyses were performed using the clusterProfiler R package to predict the mechanism of GBZGG in treating osteoporosis. An osteoporosis rat model was established by ovarian excision (OVX), and the partial results of network pharmacology were experimentally verified. Results: Pharmacodynamic results showed that GBZGG increased bone mineral density (BMD) and significantly improved the indexes of femur microstructure in model rats. The network pharmacology results showed that quercetin, luteolin, stigmasterol, angelicin, kaempferol, bakuchiol, bakuchiol, 7-O-methylisomucronulatum, isorhamnetin, formononetin, and beta-sitosterol are the major components of GBZGG, with MAPK1, AKT1, JUN, HSP90AA1, RELA, MAPK14, ESR1, RXRA, FOS, MAPK8, NCOA1, MYC, and IL-6 as its core targets for treating osteoporosis. Biological effects could be exerted by regulating the signaling pathways of fluid shear stress and the signaling pathways of atherosclerosis, advanced glycation end products (AGE-RAGE) of diabetic complications, prostate cancer, interleukin (IL-17), tumor necrosis factor (TNF), hepatitis B, mitogen-activated protein kinase (MAPK), etc. The results of animal experiments showed that GBZGG could reduce the serum levels of IL-6 and TNF-α, increase the expression of bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor 2 (RUNX2) protein, and inhibit the activity of extracellular-regulated protein kinases (ERK1/2) and phosphorylation ERK1/2 (p-ERK1/2) protein. Conclusion: GBZGG reduces the expression of ERK1/2 and p-ERK1/2 proteins and mRNAs through the inhibitory effects on IL-6 and TNF-α and negatively regulates the MAPK/ERK signaling pathway. The osteoporosis model showed that it effectively improved the loss of bone mass and destruction of bone microstructure in rats and maintained a positive balance for bone metabolism.

3.
World J Clin Oncol ; 14(12): 549-569, 2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38179405

RESUMEN

Adenosine triphosphate (ATP) induced cell death (AICD) is a critical cellular process that has garnered substantial scientific interest for its profound relevance to cancer biology and to therapeutic interventions. This comprehensive review unveils the intricate web of AICD mechanisms and their intricate connections with cancer biology. This review offers a comprehensive framework for comprehending the multifaceted role of AICD in the context of cancer. This is achieved by elucidating the dynamic interplay between systemic and cellular ATP homeostasis, deciphering the intricate mechanisms governing AICD, elucidating its intricate involvement in cancer signaling pathways, and scrutinizing validated key genes. Moreover, the exploration of AICD as a potential avenue for cancer treatment underscores its essential role in shaping the future landscape of cancer therapeutics.

4.
CNS Neurosci Ther ; 28(9): 1393-1408, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35702948

RESUMEN

AIMS: Visceral hypersensitivity in irritable bowel syndrome (IBS) is widespread, but effective therapies for it remain elusive. As a canonical anti-inflammatory protein, suppressor of cytokine signaling 3 (SOCS3) reportedly relays exchange protein 1 directly activated by cAMP (Epac1) signaling and inhibits the intracellular response to inflammatory cytokines. Despite the inhibitory effect of SOCS3 on the pro-inflammatory response and neuroinflammation in PVN, the systematic investigation of Epac1-SOCS3 signaling involved in visceral hypersensitivity remains unknown. This study aimed to explore Epac1-SOCS3 signaling in the activity of hypothalamic paraventricular nucleus (PVN) corticotropin-releasing factor (CRF) neurons and visceral hypersensitivity in adult rats experiencing neonatal colorectal distension (CRD). METHODS: Rats were subjected to neonatal CRD to simulate visceral hypersensitivity to investigate the effect of Epac1-SOCS3 signaling on PVN CRF neurons. The expression and activity of Epac1 and SOCS3 in nociceptive hypersensitivity were determined by western blot, RT-PCR, immunofluorescence, radioimmunoassay, electrophysiology, and pharmacology. RESULTS: In neonatal-CRD-induced visceral hypersensitivity model, Epac1 and SOCS3 expressions were downregulated and IL-6 levels elevated in PVN. However, infusion of Epac agonist 8-pCPT in PVN reduced CRF neuronal firing rates, and overexpression of SOCS3 in PVN by AAV-SOCS3 inhibited the activation of PVN neurons, reduced visceral hypersensitivity, and precluded pain precipitation. Intervention with IL-6 neutralizing antibody also alleviated the visceral hypersensitivity. In naïve rats, Epac antagonist ESI-09 in PVN increased CRF neuronal firing. Consistently, genetic knockdown of Epac1 or SOCS3 in PVN potentiated the firing rate of CRF neurons, functionality of HPA axis, and sensitivity of visceral nociception. Moreover, pharmacological intervention with exogenous IL-6 into PVN simulated the visceral hypersensitivity. CONCLUSIONS: Inactivation of Epac1-SOCS3 pathway contributed to the neuroinflammation accompanied by the sensitization of CRF neurons in PVN, precipitating visceral hypersensitivity and pain in rats experiencing neonatal CRD.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Hiperalgesia , Enfermedades Intestinales , Proteína 3 Supresora de la Señalización de Citocinas , Dolor Visceral , Animales , Enfermedades del Colon/genética , Enfermedades del Colon/metabolismo , Enfermedades del Colon/patología , Hormona Liberadora de Corticotropina/metabolismo , Dilatación Patológica/complicaciones , Dilatación Patológica/genética , Dilatación Patológica/metabolismo , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Hiperalgesia/etiología , Hiperalgesia/genética , Hiperalgesia/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Recién Nacido , Enfermedades del Recién Nacido/genética , Enfermedades del Recién Nacido/metabolismo , Interleucina-6/metabolismo , Enfermedades Intestinales/complicaciones , Enfermedades Intestinales/genética , Enfermedades Intestinales/metabolismo , Enfermedades Intestinales/patología , Enfermedades Neuroinflamatorias/genética , Enfermedades Neuroinflamatorias/metabolismo , Neuronas/metabolismo , Dolor , Núcleo Hipotalámico Paraventricular/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Ratas , Ratas Sprague-Dawley , Enfermedades del Recto/genética , Enfermedades del Recto/metabolismo , Enfermedades del Recto/patología , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Dolor Visceral/etiología , Dolor Visceral/genética , Dolor Visceral/metabolismo
5.
J Psychopharmacol ; 35(5): 591-605, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33749357

RESUMEN

BACKGROUND: Long-term morphine use is associated with serious side effects, such as morphine-induced hyperalgesia and analgesic tolerance. Previous investigations have documented the association between dopamine (DA) neurons in the ventral tegmental area (VTA) and pain. However, whether VTA DA neurons are implicated in morphine-induced hyperalgesia and analgesic tolerance remains elusive. METHODS: Initially, we observed behavioural effects of lidocaine administration into VTA or ablation of VTA DA neurons on morphine-induced hyperalgesia and anti-nociceptive tolerance. Subsequently, c-Fos expression in nucleus accumbens (NAc) shell-projecting and medial prefrontal cortex (mPFC)-projecting VTA DA neurons after chronic morphine treatment was respectively investigated. Afterwards, the effects of chemogenetic manipulation of NAc shell-projecting or mPFC-projecting DA neurons on morphine-induced hyperalgesia and anti-nociceptive tolerance were observed. Additionally, effects of chemogenetic manipulation of VTA GABA neurons on c-Fos expression in VTA DA neurons were investigated. RESULTS: Lidocaine injection into VTA relieved established hyperalgesia and anti-nociceptive tolerance whereas ablation of VTA DA neurons prevented the development of morphine-induced hyperalgesia and anti-nociceptive tolerance. Chronic morphine treatment increased c-Fos expression in NAc shell-projecting DA neurons, rather than in mPFC-projecting DA neurons. Chemogenetic manipulation of NAc shell-projecting DA neurons had influence on morphine-induced hyperalgesia and tolerance. However, chemogenetic manipulation of mPFC-projecting DA neurons had no significant effects on morphine-induced hyperalgesia and anti-nociceptive tolerance. Chemogenetic manipulation of VTA GABA neurons affected the c-Fos expression in VTA DA neurons. CONCLUSIONS: These findings revealed the involvement of NAc shell-projecting VTA DA neurons in morphine-induced hyperalgesia and anti-nociceptive tolerance, and may shed new light on the clinical management of morphine-induced hyperalgesia and analgesic tolerance. PERSPECTIVE: This study demonstrated that NAc shell-projecting DA neurons rather than mPFC-projecting DA neurons in the VTA were implicated in morphine-induced hyperalgesia and anti-nociceptive tolerance. Our findings may pave the way for the discovery of novel therapies for morphine-induced hyperalgesia and analgesic tolerance.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Tolerancia a Medicamentos , Hiperalgesia/inducido químicamente , Morfina/toxicidad , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/farmacología , Analgésicos Opioides/toxicidad , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Morfina/administración & dosificación , Morfina/farmacología , Núcleo Accumbens/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo
6.
Mol Pain ; 14: 1744806918767560, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29607715

RESUMEN

Treating bone cancer pain continues to be a clinical challenge and underlying mechanisms of bone cancer pain remain elusive. Here, we reported that sonic hedgehog signaling plays a critical role in the development of bone cancer pain. Tibia bone cavity tumor cell implantation produces bone cancer-related mechanical allodynia, thermal hyperalgesia, and spontaneous and movement-evoked pain behaviors. Production and persistence of these pain behaviors are well correlated with tumor cell implantation-induced up-regulation and activation of sonic hedgehog signaling in primary sensory neurons and spinal cord. Spinal administration of sonic hedgehog signaling inhibitor cyclopamine prevents and reverses the induction and persistence of bone cancer pain without affecting normal pain sensitivity. Inhibiting sonic hedgehog signaling activation with cyclopamine, in vivo or in vitro, greatly suppresses tumor cell implantation-induced increase of intracellular Ca2+ and hyperexcitability of the sensory neurons and also the activation of GluN2B receptor and the subsequent Ca2+-dependent signals CaMKII and CREB in dorsal root ganglion and the spinal cord. These findings show a critical mechanism underlying the pathogenesis of bone cancer pain and suggest that targeting sonic hedgehog signaling may be an effective approach for treating bone cancer pain.


Asunto(s)
Neoplasias Óseas/complicaciones , Dolor en Cáncer/etiología , Dolor en Cáncer/patología , Proteínas Hedgehog/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Transducción de Señal , Animales , Calcio/metabolismo , Dolor en Cáncer/metabolismo , Línea Celular Tumoral , Femenino , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Espacio Intracelular/metabolismo , Trasplante de Neoplasias , Nocicepción , Ratas Sprague-Dawley , Médula Espinal/patología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA