Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Chem Sci ; 14(11): 2826-2838, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36937599

RESUMEN

[FeFe] hydrogenases are highly efficient metalloenyzmes for hydrogen conversion. Their active site cofactor (the H-cluster) is composed of a canonical [4Fe-4S] cluster ([4Fe-4S]H) linked to a unique organometallic di-iron subcluster ([2Fe]H). In [2Fe]H the two Fe ions are coordinated by a bridging 2-azapropane-1,3-dithiolate (ADT) ligand, three CO and two CN- ligands, leaving an open coordination site on one Fe where substrates (H2 and H+) as well as inhibitors (e.g. O2, CO, H2S) may bind. Here, we investigate two new active site states that accumulate in [FeFe] hydrogenase variants where the cysteine (Cys) in the proton transfer pathway is mutated to alanine (Ala). Our experimental data, including atomic resolution crystal structures and supported by calculations, suggest that in these two states a third CN- ligand is bound to the apical position of [2Fe]H. These states can be generated both by "cannibalization" of CN- from damaged [2Fe]H subclusters as well as by addition of exogenous CN-. This is the first detailed spectroscopic and computational characterisation of the interaction of exogenous CN- with [FeFe] hydrogenases. Similar CN--bound states can also be generated in wild-type hydrogenases, but do not form as readily as with the Cys to Ala variants. These results highlight how the interaction between the first amino acid in the proton transfer pathway and the active site tunes ligand binding to the open coordination site and affects the electronic structure of the H-cluster.

2.
Nat Commun ; 14(1): 458, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709327

RESUMEN

Eukaryotic arginylation is an essential post-translational modification that modulates protein stability and regulates protein half-life. Arginylation is catalyzed by a family of enzymes known as the arginyl-tRNA transferases (ATE1s), which are conserved across the eukaryotic domain. Despite their conservation and importance, little is known regarding the structure, mechanism, and regulation of ATE1s. In this work, we show that ATE1s bind a previously undiscovered [Fe-S] cluster that is conserved across evolution. We characterize the nature of this [Fe-S] cluster and find that the presence of the [Fe-S] cluster in ATE1 is linked to its arginylation activity, both in vitro and in vivo, and the initiation of the yeast stress response. Importantly, the ATE1 [Fe-S] cluster is oxygen-sensitive, which could be a molecular mechanism of the N-degron pathway to sense oxidative stress. Taken together, our data provide the framework of a cluster-based paradigm of ATE1 regulatory control.


Asunto(s)
Aminoaciltransferasas , Proteínas Hierro-Azufre , Aminoaciltransferasas/genética , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Hierro-Azufre/genética
3.
Methods Mol Biol ; 2439: 79-89, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35226316

RESUMEN

DNAzymes are biocatalysts that have been selected in vitro and their function inside cells (in vivo) is extremely low. Thus, almost all studies have been carried out in diluted solutions (in vitro). The cellular presence of molecules such as amino acids, polypeptides, alcohols, and sugars introduces forces that modify the kinetics and thermodynamics of DNAzyme-mediated catalysis. The crowded intracellular environment referred to as molecular crowding can be mimicked by adding high concentrations of natural or synthetic macromolecules to the reaction conditions. Here, we investigate the activity of the 10-23 DNAzyme and the stability of the DNAzyme:RNA complex under molecular crowding conditions. Therefore, we use a Förster resonance energy transfer (FRET)-based activity assay in combination with denaturing urea polyacrylamide gel electrophoresis and circular dichroism (CD) spectroscopy.


Asunto(s)
ADN Catalítico , ADN Catalítico/química , Electroforesis en Gel de Poliacrilamida , Transferencia Resonante de Energía de Fluorescencia , Cinética , Termodinámica
4.
J Biol Inorg Chem ; 26(1): 93-108, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33544225

RESUMEN

The Schizosaccharomyces pombe Asp1 protein is a bifunctional kinase/pyrophosphatase that belongs to the highly conserved eukaryotic diphosphoinositol pentakisphosphate kinase PPIP5K/Vip1 family. The N-terminal Asp1 kinase domain generates specific high-energy inositol pyrophosphate (IPP) molecules, which are hydrolyzed by the C-terminal Asp1 pyrophosphatase domain (Asp1365-920). Thus, Asp1 activities regulate the intracellular level of a specific class of IPP molecules, which control a wide number of biological processes ranging from cell morphogenesis to chromosome transmission. Recently, it was shown that chemical reconstitution of Asp1371-920 leads to the formation of a [2Fe-2S] cluster; however, the biological relevance of the cofactor remained under debate. In this study, we provide evidence for the presence of the Fe-S cluster in Asp1365-920 inside the cell. However, we show that the Fe-S cluster does not influence Asp1 pyrophosphatase activity in vitro or in vivo. Characterization of the as-isolated protein by electronic absorption spectroscopy, mass spectrometry, and X-ray absorption spectroscopy is consistent with the presence of a [2Fe-2S]2+ cluster in the enzyme. Furthermore, we have identified the cysteine ligands of the cluster. Overall, our work reveals that Asp1 contains an Fe-S cluster in vivo that is not involved in its pyrophosphatase activity.


Asunto(s)
Proteínas del Citoesqueleto/química , Proteínas Hierro-Azufre/química , Pirofosfatasas/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimología , Biocatálisis , Cisteína/química , Proteínas del Citoesqueleto/genética , Proteínas Hierro-Azufre/genética , Enzimas Multifuncionales/química , Enzimas Multifuncionales/genética , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Pirofosfatasas/genética , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética
5.
J Am Chem Soc ; 136(22): 7926-32, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24813236

RESUMEN

(E)-1-Hydroxy-2-methylbut-2-enyl 4-diphosphate reductase (IspH) is a [Fe4S4] cluster-containing enzyme involved in isoprenoid biosynthesis in many bacteria as well as in malaria parasites and is an important drug target. Several inhibitors including amino and thiol substrate analogues, as well as acetylene and pyridine diphosphates, have been reported. Here, we investigate the mode of binding of four pyridine diphosphates to Escherichia coli IspH by using X-ray crystallography. In three cases, one of the iron atoms in the cluster is absent, but in the structure with (pyridin-3-yl)methyl diphosphate, the most potent pyridine-analogue inhibitor reported previously, the fourth iron of the [Fe4S4] cluster is present and interacts with the pyridine ring of the ligand. Based on the results of quantum chemical calculations together with the crystallographic results we propose a side-on η(2) coordination of the nitrogen and the carbon in the 2-position of the pyridine ring to the unique fourth iron in the cluster, which is in the reduced state. The X-ray structure enables excellent predictions using density functional theory of the (14)N hyperfine coupling and quadrupole coupling constants reported previously using HYSCORE spectroscopy, as well as providing a further example of the ability of such [Fe4S4]-containing proteins to form organometallic complexes.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/metabolismo , Piridinas/metabolismo , Azufre/metabolismo , Cristalografía por Rayos X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas Hierro-Azufre/química , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Oxidorreductasas/química , Unión Proteica , Conformación Proteica , Piridinas/química , Teoría Cuántica
6.
Nat Commun ; 3: 1042, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22948824

RESUMEN

The final step of the methylerythritol phosphate isoprenoid biosynthesis pathway is catalysed by the iron-sulphur enzyme IspH, producing the universal precursors of terpenes: isopentenyl diphosphate and dimethylallyl diphosphate. Here we report an unforeseen reaction discovered during the investigation of the interaction of IspH with acetylene inhibitors by X-ray crystallography, Mößbauer, and nuclear magnetic resonance spectroscopy. In addition to its role as a 2H(+)/2e(-) reductase, IspH can hydrate acetylenes to aldehydes and ketones via anti-Markovnikov/Markovnikov addition. The reactions only occur with the oxidised protein and proceed via η(1)-O-enolate intermediates. One of these is characterized crystallographically and contains a C4 ligand oxygen bound to the unique, fourth iron in the 4Fe-4S cluster: this intermediate subsequently hydrolyzes to produce an aldehyde product. This unexpected side to IspH reactivity is of interest in the context of the mechanism of action of other acetylene hydratases, as well as in the design of antiinfectives targeting IspH.


Asunto(s)
Acetileno/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Oxidorreductasas/metabolismo , Acetileno/química , Aldehídos/química , Aldehídos/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hierro/metabolismo , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA