Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Clin J Oncol Nurs ; 28(4): 380-388, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39041693

RESUMEN

BACKGROUND: Surface contamination with antineoplastic drugs (ADs) is persistent. The use of personal protective equipment (PPE) is recommended to reduce exposure to ADs. OBJECTIVES: This study explored the impact of the COVID-19 pandemic on nurses' PPE use and surface contamination with ADs. METHODS: Demographic characteristics, PPE use, and associated factors were assessed on two inpatient oncology units where etoposide and cyclophosphamide were administered before (N = 26) and during the COVID-19 pandemic (N = 31). FINDINGS: PPE use when handling contaminated excreta was significantly higher during the pandemic. Perceived risk of chemotherapy exposure was significantly associated with greater PPE use when handling AD-contaminated excreta, and conflict of interest was related to less PPE use during AD administration and handling of AD-contaminated excreta. During the pandemic, surface contamination with etoposide increased in shared areas and decreased in patient rooms.


Asunto(s)
Antineoplásicos , COVID-19 , Equipo de Protección Personal , Humanos , COVID-19/prevención & control , Femenino , Masculino , Antineoplásicos/uso terapéutico , Adulto , Persona de Mediana Edad , Pandemias , SARS-CoV-2 , Exposición Profesional/prevención & control , Enfermería Oncológica/normas , Etopósido/uso terapéutico , Ciclofosfamida/uso terapéutico , Personal de Enfermería en Hospital
2.
Commun Biol ; 7(1): 821, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38969726

RESUMEN

Algal biomass is a viable source of chemicals and metabolites for various energy, nutritional, medicinal and agricultural uses. While stresses have commonly been used to induce metabolite accumulation in microalgae in attempts to enhance high-value product yields, this is often very detrimental to growth. Therefore, understanding how to modify metabolism without deleterious consequences is highly beneficial. We demonstrate that low-doses (1-5 Gy) of ionizing radiation in the X-ray range induces a non-toxic, hormetic response in microalgae to promote metabolic activation. We identify specific radiation exposure parameters that give reproducible metabolic responses in Chlorella sorokiniana caused by transcriptional changes. This includes up-regulation of >30 lipid metabolism genes, such as genes encoding an acetyl-CoA carboxylase subunit, phosphatidic acid phosphatase, lysophosphatidic acid acyltransferase, and diacylglycerol acyltransferase. The outcome is an increased lipid yield in stationary phase cultures by 25% in just 24 hours, without any negative effects on cell viability or biomass.


Asunto(s)
Chlorella , Hormesis , Metabolismo de los Lípidos , Chlorella/metabolismo , Chlorella/efectos de la radiación , Chlorella/crecimiento & desarrollo , Metabolismo de los Lípidos/efectos de la radiación , Hormesis/efectos de la radiación , Radiación Ionizante , Biomasa
3.
Oncotarget ; 15: 328-344, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758815

RESUMEN

GZ17-6.02 has undergone phase I evaluation in patients with solid tumors (NCT03775525). The RP2D is 375 mg PO BID, with an uveal melanoma patient exhibiting a 15% reduction in tumor mass for 5 months at this dose. Studies in this manuscript have defined the biology of GZ17-6.02 in PDX isolates of uveal melanoma cells. GZ17-6.02 killed uveal melanoma cells through multiple convergent signals including enhanced ATM-AMPK-mTORC1 activity, inactivation of YAP/TAZ and inactivation of eIF2α. GZ17-6.02 significantly enhanced the expression of BAP1, predictive to reduce metastasis, and reduced the levels of ERBB family RTKs, predicted to reduce growth. GZ17-6.02 interacted with doxorubicin or ERBB family inhibitors to significantly enhance tumor cell killing which was associated with greater levels of autophagosome formation and autophagic flux. Knock down of Beclin1, ATG5 or eIF2α were more protective than knock down of ATM, AMPKα, CD95 or FADD, however, over-expression of FLIP-s provided greater protection compared to knock down of CD95 or FADD. Expression of activated forms of mTOR and STAT3 significantly reduced tumor cell killing. GZ17-6.02 reduced the expression of PD-L1 in uveal melanoma cells to a similar extent as observed in cutaneous melanoma cells whereas it was less effective at enhancing the levels of MHCA. The components of GZ17-6.02 were detected in tumors using a syngeneic tumor model. Our data support future testing GZ17-6.02 in uveal melanoma as a single agent, in combination with ERBB family inhibitors, in combination with cytotoxic drugs, or with an anti-PD1 immunotherapy.


Asunto(s)
Melanoma , Neoplasias de la Úvea , Ensayos Antitumor por Modelo de Xenoinjerto , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Melanoma/genética , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/genética , Humanos , Animales , Ratones , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Autofagia/efectos de los fármacos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
4.
Gynecol Oncol ; 183: 93-102, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38555710

RESUMEN

OBJECTIVE: Uterine serous carcinoma is a highly aggressive non-endometrioid subtype of endometrial cancer with poor survival rates overall, creating a strong need for new therapeutic strategies to improve outcomes. High-dose ascorbate (vitamin C) has been shown to inhibit cell proliferation and tumor growth in multiple preclinical models and has shown promising anti-tumor activity in combination with chemotherapy, with a favorable safety profile. We aimed to study the anti-tumor effects of ascorbate and its synergistic effect with carboplatin on uterine serous carcinoma cells. METHODS: Cell proliferation was evaluated by MTT and colony formation assays in ARK1, ARK2 and SPEC2 cells. Cellular stress, antioxidant ability, cleaved caspase 3 activity and adhesion were measured by ELISA assays. Cell cycle was detected by Cellometer. Invasion was measured using a wound healing assay. Changes in protein expression were determined by Western immunoblotting. RESULTS: High-dose ascorbate significantly inhibited cell proliferation, caused cell cycle arrest, induced cellular stress, and apoptosis, increased DNA damage, and suppressed cell invasion in ARK1 and SPEC2 cells. Treatment of both cells with 1 mM N-acetylcysteine reversed ascorbate-induced apoptosis and inhibition of cell proliferation. The combination of ascorbate and carboplatin produced significant synergistic effects in inhibiting cell proliferation and invasion, inducing cellular stress, causing DNA damage, and enhancing cleaved caspase 3 levels compared to each compound alone in both cells. CONCLUSIONS: Ascorbate has potent antitumor activity and acts synergistically with carboplatin through its pro-oxidant effects. Clinical trials of ascorbate combined with carboplatin as adjuvant treatment of uterine serous carcinoma are worth exploring.


Asunto(s)
Apoptosis , Ácido Ascórbico , Carboplatino , Cistadenocarcinoma Seroso , Sinergismo Farmacológico , Neoplasias Uterinas , Ácido Ascórbico/farmacología , Ácido Ascórbico/administración & dosificación , Humanos , Carboplatino/farmacología , Carboplatino/administración & dosificación , Femenino , Línea Celular Tumoral , Neoplasias Uterinas/tratamiento farmacológico , Neoplasias Uterinas/patología , Neoplasias Uterinas/metabolismo , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/metabolismo , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Especies Reactivas de Oxígeno/metabolismo , Daño del ADN/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/administración & dosificación
5.
Heliyon ; 10(3): e25578, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356491

RESUMEN

Background: Poor birth outcomes such as preterm birth/delivery disproportionately affect African Americans compared to White individuals. Reasons for this disparity are likely multifactorial, and include prenatal psychosocial stressors, and attendant increased lipid peroxidation; however, empirical data linking psychosocial stressors during pregnancy to oxidative status are limited. Methods: We used established scales to measure five psychosocial stressors. Maternal adverse childhood experiences, financial stress, social support, anxiety, and depression were measured among 50 African American and White pregnant women enrolled in the Stress and Health in Pregnancy cohort. Liquid chromatography-tandem mass spectrometry was used to measure biomarkers of oxidative stress (four urinary F2-isoprostane isomers), to estimate oxidative status. Linear regression models were used to evaluate associations between psychosocial stressors, prenatal oxidative status and preterm birth. Results: After adjusting for maternal obesity, gestational diabetes, and cigarette smoking, African American women with higher oxidative status were more likely to report higher maternal adverse childhood experience scores (ß = 0.16, se = 1.07, p-value = 0.024) and depression scores (ß = 0.05, se = 0.02, p = 0.014). Higher oxidative status was also associated with lower gestational age at birth (ß = -0.13, se = 0.06, p = 0.04) in this population. These associations were not apparent in Whites. However, none of the cross-product terms for race/ethnicity and social stressors reached statistical significance (p > 0.05). Conclusion: While the small sample size limits inference, our novel data suggest that psychosocial stressors may contribute significantly to oxidative stress during pregnancy, and preterm birth or delivery African Americans. If replicated in larger studies, these findings would support oxidative stress reduction using established dietary or pharmacological approaches present a potential avenue to mitigate adverse effects of psychosocial stressors on birth outcomes.

6.
Nat Commun ; 15(1): 730, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272925

RESUMEN

Stimulating the innate immune system has been explored as a therapeutic option for the treatment of gliomas. Inactivating mutations in ATRX, defining molecular alterations in IDH-mutant astrocytomas, have been implicated in dysfunctional immune signaling. However, little is known about the interplay between ATRX loss and IDH mutation on innate immunity. To explore this, we generated ATRX-deficient glioma models in the presence and absence of the IDH1R132H mutation. ATRX-deficient glioma cells are sensitive to dsRNA-based innate immune agonism and exhibit impaired lethality and increased T-cell infiltration in vivo. However, the presence of IDH1R132H dampens baseline expression of key innate immune genes and cytokines in a manner restored by genetic and pharmacological IDH1R132H inhibition. IDH1R132H co-expression does not interfere with the ATRX deficiency-mediated sensitivity to dsRNA. Thus, ATRX loss primes cells for recognition of dsRNA, while IDH1R132H reversibly masks this priming. This work reveals innate immunity as a therapeutic vulnerability of astrocytomas.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteína Nuclear Ligada al Cromosoma X/genética , Glioma/genética , Glioma/metabolismo , Astrocitoma/genética , Mutación , Inmunidad Innata/genética , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo
7.
Heliyon ; 9(10): e20761, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37860528

RESUMEN

Every third patient with intracranial meningioma develops seizures of poorly understood etiology. Tumor and peritumoral edema may exert mechanical pressure on the cortex that may affect mechano-gated potassium channels - KCNK2 and KCNK4. These channels regulate neuron excitability and have been related to seizures in some other conditions. The objective of the present study was to explore a potential relation between the levels of these proteins in tumor tissue and adjacent cortex and seizures development. The study included 19 meningioma patients that presented one or more preoperative seizures and 24 patients with no seizures. Tissue samples were collected in the course of surgical removal of the meningioma. Postoperative seizure freedom was achieved in 11 out of 19 patients. The relative level of KCNK2 in the cortical tissue was lower in patients with preoperative seizures. On the other hand, cortical tissue level of KCNK4 was higher in patients that became seizure-free after the surgery. In addition, relative levels of KCNK4 in the cortical and tumor tissue appear to be lowered by the treatment with anti-seizure medication levetiracetam. These results imply that KCNK2 and KCNK4 may be involved in the development of meningioma-related seizures and may represent promising therapeutic targets.

8.
Cancers (Basel) ; 15(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37568630

RESUMEN

Manganese(III) porphyrin MnTnBuOE-2-PyP5+ (MnBuOE, BMX-001) is a third-generation redox-active cationic substituted pyridylporphyrin-based drug with a good safety/toxicity profile that has been studied in several types of cancer. It is currently in four phase I/II clinical trials on patients suffering from glioma, head and neck cancer, anal squamous cell carcinoma and multiple brain metastases. There is yet an insufficient understanding of the impact of MnBuOE on lung cancer. Therefore, this study aims to fill this gap by demonstrating the effects of MnBuOE on non-small cell lung cancer (NSCLC) A549 and H1975 cell lines. The cytotoxicity of MnBuOE alone or combined with cisplatin was evaluated by crystal violet (CV) and/or 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-Tetrazolium (MTS) reduction assays. Intracellular ROS levels were assessed using two fluorescent probes. Furthermore, the impact of MnBuOE alone or in combination with cisplatin on collective cell migration, individual chemotactic migration and chemoinvasion was assessed using the wound-healing and transwell assays. The expression of genes related to migration and invasion was assessed through RT-qPCR. While MnBuOE alone decreased H1975 cell viability at high concentrations, when combined with cisplatin it markedly reduced the viability of the more invasive H1975 cell line but not of A549 cell line. However, MnBuOE alone significantly decreased the migration of both cell lines. The anti-migratory effect was more pronounced when MnBuOE was combined with cisplatin. Finally, MnBuOE alone or combined with cisplatin significantly reduced cell invasion. MnBuOE alone or combined with cisplatin downregulated MMP2, MMP9, VIM, EGFR and VEGFA and upregulated CDH1 in both cell lines. Overall, our data demonstrate the anti-metastatic potential of MnBuOE for the treatment of NSCLC.

9.
bioRxiv ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37131619

RESUMEN

Stimulating the innate immune system has been explored as a therapeutic option for the treatment of gliomas. Inactivating mutations in ATRX , defining molecular alterations in IDH -mutant astrocytomas, have been implicated in dysfunctional immune signaling. However, little is known about the interplay between ATRX loss and IDH mutation on innate immunity. To explore this, we generated ATRX knockout glioma models in the presence and absence of the IDH1 R 132 H mutation. ATRX-deficient glioma cells were sensitive to dsRNA-based innate immune agonism and exhibited impaired lethality and increased T-cell infiltration in vivo . However, the presence of IDH1 R 132 H dampened baseline expression of key innate immune genes and cytokines in a manner restored by genetic and pharmacological IDH1 R132H inhibition. IDH1 R132H co-expression did not interfere with the ATRX KO-mediated sensitivity to dsRNA. Thus, ATRX loss primes cells for recognition of dsRNA, while IDH1 R132H reversibly masks this priming. This work reveals innate immunity as a therapeutic vulnerability of astrocytoma.

10.
Biomaterials ; 294: 121985, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36630826

RESUMEN

Many biologics have a short plasma half-life, and their conjugation to polyethylene glycol (PEG) is commonly used to solve this problem. However, the improvement in the plasma half-life of PEGylated drugs' is at an asymptote because the development of branched PEG has only had a modest impact on pharmacokinetics and pharmacodynamics. Here, we developed an injectable PEG-like conjugate that forms a subcutaneous depot for the sustained delivery of biologics. The PEG-like conjugate consists of poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) conjugated to exendin, a peptide drug used in the clinic to treat type 2 diabetes. The depot-forming exendin-POEGMA conjugate showed greater efficacy than a PEG conjugate of exendin as well as Bydureon, a clinically approved sustained-release formulation of exendin. The injectable depot-forming exendin-POEGMA conjugate did not elicit an immune response against the polymer, so that it remained effective and safe for long-term management of type 2 diabetes upon chronic administration. In contrast, the PEG conjugate induced an anti-PEG immune response, leading to early clearance and loss of efficacy upon repeat dosing. The exendin-POEGMA depot also showed superior long-term efficacy compared to Bydureon. Collectively, these results suggest that an injectable POEGMA conjugate of biologic drugs that forms a drug depot under the skin, providing favorable pharmacokinetic properties and sustained efficacy while remaining non-immunogenic, offers significant advantages over other commonly used drug delivery technologies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Exenatida , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polietilenglicoles/química , Péptidos/química , Antígenos , Preparaciones de Acción Retardada
11.
J Exp Bot ; 74(3): 1107-1122, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36453904

RESUMEN

Metabolism of metals in microalgae and adaptation to metal excess are of significant environmental importance. We report a three-step mechanism that the green microalga Chlorella sorokiniana activates during the acquisition of and adaptation to manganese (Mn), which is both an essential trace metal and a pollutant of waters. In the early stage, Mn2+ was mainly bound to membrane phospholipids and phosphates in released mucilage. The outer cell wall was reorganized and lipids were accumulated, with a relative increase in lipid saturation. Intracellular redox settings were rapidly altered in the presence of Mn excess, with increased production of reactive oxygen species that resulted in lipid peroxidation and a decrease in the concentration of thiols. In the later stage, Mn2+ was chelated by polyphosphates and accumulated in the cells. The structure of the inner cell wall was modified and the redox milieu established a new balance. Polyphosphates serve as a transient Mn2+ storage ligand, as proposed previously. In the final stage, Mn was stored in multivalent Mn clusters that resemble the structure of the tetramanganese-calcium core of the oxygen-evolving complex. The present findings elucidate the bioinorganic chemistry and metabolism of Mn in microalgae, and may shed new light on water-splitting Mn clusters.


Asunto(s)
Chlorella , Microalgas , Manganeso/metabolismo , Chlorella/metabolismo , Microalgas/metabolismo , Metales/metabolismo
12.
Antioxidants (Basel) ; 11(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36358570

RESUMEN

The manganese(III) porphyrin MnTnHex-2-PyP5+ (MnTnHex) is a potent superoxide dismutase mimic and modulator of redox-based transcriptional activity that has been studied in the context of different human disease models, including cancer. Nevertheless, for lung cancer, hardly any information is available. Thus, the present work aims to fill this gap and reports the effects of MnTnHex in non-small cell lung cancer (NSCLC) cells, more specifically, A549 and H1975 cells, in vitro. Both cell lines were initially characterized in terms of innate levels of catalase, glutathione peroxidase 1, and peroxiredoxins 1 and 2. To assess the effect of MnTnHex in NSCLC, alone or in combination with cisplatin, endpoints related to the cell viability, cell cycle distribution, cell motility, and characterization of the volatile carbonyl compounds (VCCs) generated in the extracellular medium (i.e., exometabolome) were addressed. The results show that MnTnHex as a single drug markedly reduced the viability of both NSCLC cell lines, with some IC50 values reaching sub-micromolar levels. This redox-active drug also altered the cell cycle distribution, induced cell death, and increased the cytotoxicity pattern of cisplatin. MnTnHex also reduced collective cell migration. Finally, the metabolomics study revealed an increase in the levels of a few VCCs associated with oxidative stress in MnTnHex-treated cells. Altogether these results suggest the therapeutic potential of MnTnHex to be further explored, either alone or in combination therapy with cisplatin, in NSCLC.

13.
Antimicrob Agents Chemother ; 66(10): e0014022, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36165615

RESUMEN

In orthopedic oncology, the implant of a megaprosthetic device is standard of care after large-scale tumor resection involving segmental removal of bone. Infection remains the leading cause of implant failure, often resulting in major morbidity. Perioperative antibiotic practices for megaprosthetic reconstructions are not standardized and are based on guidelines for conventional joint arthroplasties. This study aims to evaluate the efficacy of current prophylactic strategies for megaprosthetic reconstructions. We conducted a retrospective review of megaprosthetic reconstructions performed at Duke University from 2001 to 2021. Logistic regression with GEE was used to assess whether a prolonged course of postoperative antibiotics is associated with infection risk. We assessed the microbial profile and corresponding susceptibilities of megaprosthetic infections through record review. Additionally, we designed a pharmacokinetic subgroup analysis using liquid chromatography-tandem mass spectrometry to quantify antibiotic concentrations in surgical tissue. Wilcoxon rank-sum tests were used to correlate tissue concentrations with infection risk. Out of 184 cases, 23 (12.5%) developed infection within 1 year. Extended postoperative antibiotics were not significantly associated with infection risk (P = 0.23). Among 18 culture-positive cases, 4 (22.2%) were caused by cefazolin-susceptible organisms. Median bone and muscle concentrations of cefazolin among cases that developed postoperative infection (0.065 ng/mL and 0.2 ng/mL, respectively) were significantly lower than those of cases that did not (0.42 ng/mL and 1.95 ng/mL, P < 0.01 and P = 0.03). This study is the first to comprehensively assess aspects of perioperative prophylaxis for megaprosthetic reconstructions. Extending postoperative antibiotics did not reduce infection risk. We detected a high frequency of cefazolin nonsusceptible organisms among postoperative infections. Additionally, intraoperative antibiotic tissue concentrations may be predictive of later infection. Future studies ought to examine optimal drug choices and dosing strategies.


Asunto(s)
Profilaxis Antibiótica , Cefazolina , Humanos , Cefazolina/uso terapéutico , Antibacterianos/uso terapéutico , Estudios Retrospectivos , Infección de la Herida Quirúrgica/prevención & control , Infección de la Herida Quirúrgica/tratamiento farmacológico
14.
Nano Lett ; 22(14): 5898-5908, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35839459

RESUMEN

The development of platinum(Pt)-drugs for cancer therapy has stalled, as no new Pt-drugs have been approved in over a decade. Packaging small molecule drugs into nanoparticles is a way to enhance their therapeutic efficacy. To date, there has been no direct comparison of relative merits of the choice of Pt oxidation state in the same nanoparticle system that would allow its optimal design. To address this lacuna, we designed a recombinant asymmetric triblock polypeptide (ATBP) that self-assembles into rod-shaped micelles and chelates Pt(II) or enables covalent conjugation of Pt(IV) with similar morphology and stability. Both ATBP-Pt(II) and ATBP-Pt(IV) nanoparticles enhanced the half-life of Pt by ∼45-fold, but ATBP-Pt(IV) had superior tumor regression efficacy compared to ATBP-Pt(II) and cisplatin. These results suggest loading Pt(IV) into genetically engineered nanoparticles may yield a new generation of more effective platinum-drug nanoformulations.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Profármacos , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/química , Cisplatino/uso terapéutico , Ratones , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Péptidos/uso terapéutico , Platino (Metal)/química , Profármacos/química
15.
Oxid Med Cell Longev ; 2022: 9664636, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898616

RESUMEN

We have employed a redox-active MnP (MnTnBuOE-2-PyP5+, Mn(III) meso-tetrakis (N-n-butoxyethylpyridinium-2-yl) porphyrin) frequently identified as superoxide dismutase mimic or BMX-001, to explore the redox status of normal ovarian cell in relation to two ovarian cancer cell lines: OV90 human serous ovarian cancer cell and chemotherapy-resistant OV90 cell (OVCD). We identified that OVCD cells are under oxidative stress due to high hydrogen peroxide (H2O2) levels and low glutathione peroxidase and thioredoxin 1. Furthermore, OVCD cells have increased glycolysis activity and mitochondrial respiration when compared to immortalized ovarian cells (hTER7) and parental cancer cells (OV90). Our goal was to study how ovarian cell growth depends upon the redox state of the cell; hence, we used MnP (BMX-001), a redox-active MnSOD mimetic, as a molecular tool to alter ovarian cancer redox state. Interestingly, OVCD cells preferentially uptake MnP relative to OV90 cells which led to increased inhibition of cell growth, glycolytic activity, OXPHOS, and ATP, in OVCD cells. These effects were further increased when MnP was combined with carboplatin. The effects were discussed with regard to the elevation in H2O2 levels, increased oxidative stress, and reduced Nrf2 levels and its downstream targets when cells were exposed to either MnP or MnP/carboplatin. It is significant to emphasize that MnP protects normal ovarian cell line, hTER7, against carboplatin toxicity. Our data demonstrate that the addition of MnP-based redox-active drugs may be used (via increasing excessively the oxidative stress of serous ovarian cancer cells) to improve cancer patients' chemotherapy outcomes, which develop resistance to platinum-based drugs.


Asunto(s)
Metaloporfirinas , Neoplasias Ováricas , Porfirinas , Antioxidantes , Carboplatino/farmacología , Carboplatino/uso terapéutico , Línea Celular , Femenino , Humanos , Peróxido de Hidrógeno , Metaloporfirinas/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Oxidación-Reducción , Superóxido Dismutasa
16.
Prostate ; 82(7): 858-866, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35286730

RESUMEN

BACKGROUND: In preclinical models of prostate cancer (PC), disulfiram (DSF) reduced tumor growth only when co-administered with copper (Cu), and Cu uptake in tumors is partially regulated by androgen-receptor signaling. However, prior trials of DSF in PC used DSF as monotherapy. OBJECTIVE: To assess the safety and efficacy of concurrent administration of DSF with Cu, we conducted a phase 1b clinical trial of patients with metastatic castration-resistant prostate cancer (mCRPC) receiving Cu with DSF. DESIGN, SETTING, AND PARTICIPANTS: Patients with mCRPC were treated in two cohorts: mCRPC with nonliver/peritoneal metastases (A), and mCRPC with liver and/or peritoneal metastases (B). Baseline Cu avidity was measured by 64 CuCl2 PET scan. Intravenous (IV) CuCl2 was given weekly for three doses with oral daily DSF followed by daily oral Cu gluconate and DSF until disease progression. DSF and metabolite diethyldithiocarbamic acid methyl ester (Me-DDC) levels in plasma were measured. DSF and Me-DDC were then assessed for cytotoxicity in vitro. RESULTS: We treated nine patients with mCRPC (six on cohort A and three on cohort B). Bone and nodal metastases showed differential and heterogeneous Cu uptake on 64 CuCl2 PET scans. No confirmed PSA declines or radiographic responses were observed. Median PFS was 2.8 months and median OS was 8.3 months. Common adverse events included fatigue and psychomotor depression; no Grade 4/5 AEs were observed. Me-DDC was measurable in all samples (LOQ = 0.512 ng/ml), whereas DSF was not (LOQ = 0.032 ng/ml, LOD = 0.01 ng/ml); Me-DDC was not cytotoxic in vitro. CONCLUSIONS: Oral DSF is not an effective treatment for mCRPC due to rapid metabolism into an inactive metabolite, Me-DDC. This trial has stopped enrollment and further work is needed to identify a stable DSF formulation for treatment of mCRPC.


Asunto(s)
Neoplasias Peritoneales , Neoplasias de la Próstata Resistentes a la Castración , Cobre/uso terapéutico , Disulfiram/uso terapéutico , Humanos , Masculino , Estudios Prospectivos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico
17.
Nanomaterials (Basel) ; 12(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35159680

RESUMEN

Cancer treatment-induced toxicities may restrict maximal effective dosing for treatment and cancer survivors' quality of life. It is critical to develop novel strategies that mitigate treatment-induced toxicity without affecting the efficacy of anti-cancer therapies. Rapamycin is a macrolide with anti-cancer properties, but its clinical application has been hindered, partly by unfavorable bioavailability, pharmacokinetics, and side effects. As a result, significant efforts have been undertaken to develop a variety of nano-delivery systems for the effective and safe administration of rapamycin. While the efficacy of nanostructures carrying rapamycin has been studied intensively, the pharmacokinetics, biodistribution, and safety remain to be investigated. In this study, we demonstrate the potential for rapamycin perfluorocarbon (PFC) nanoparticles to mitigate cisplatin-induced acute kidney injury with a single preventative dose. Evaluations of pharmacokinetics and biodistribution suggest that the PFC nanoparticle delivery system improves rapamycin pharmacokinetics. The safety of rapamycin PFC nanoparticles was shown both in vitro and in vivo. After a single dose, no disturbance was observed in blood tests or cardiac functional evaluations. Repeated dosing of rapamycin PFC nanoparticles did not affect overall spleen T cell proliferation and responses to stimulation, although it significantly decreased the number of Foxp3+CD4+ T cells and NK1.1+ cells were observed.

18.
Mol Cancer Ther ; 21(1): 217-226, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34675120

RESUMEN

A noninvasive test to discriminate indolent prostate cancers from lethal ones would focus treatment where necessary while reducing overtreatment. We exploited the known activity of heat shock protein 90 (Hsp90) as a chaperone critical for the function of numerous oncogenic drivers, including the androgen receptor and its variants, to detect aggressive prostate cancer. We linked a near-infrared fluorescing molecule to an HSP90 binding drug and demonstrated that this probe (designated HS196) was highly sensitive and specific for detecting implanted prostate cancer cell lines with greater uptake by more aggressive subtypes. In a phase I human study, systemically administered HS196 could be detected in malignant nodules within prostatectomy specimens. Single-cell RNA sequencing identified uptake of HS196 by malignant prostate epithelium from the peripheral zone (AMACR+ERG+EPCAM+ cells), including SYP+ neuroendocrine cells that are associated with therapeutic resistance and metastatic progression. A theranostic version of this molecule is under clinical testing.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/genética , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones SCID , Neoplasias de la Próstata/patología
19.
J Invest Dermatol ; 141(10): 2509-2520, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33848530

RESUMEN

UVR and immunosuppression are major risk factors for cutaneous squamous cell carcinoma (cSCC). Regulatory T cells promote cSCC carcinogenesis, and in other solid tumors, infiltrating regulatory T cells and CD8+ T cells express ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1) (also known as CD39), an ectoenzyme that catalyzes the rate-limiting step in converting extracellular adenosine triphosphate (ATP) to extracellular adenosine (ADO). We previously showed that extracellular purine nucleotides influence DNA damage repair. In this study, we investigate whether DNA damage repair is modulated through purinergic signaling in cSCC. We found increased ENTPD1 expression on T cells within cSCCs when compared with the expression on T cells from blood or nonlesional skin, and accordingly, concentrations of derivative extracellular adenosine diphosphate (ADP), adenosine monophosphate (AMP), and ADO are increased in tumors compared with those in normal skin. Importantly, ENTPD1 expression is significantly higher in human cSCCs that metastasize than in those that are nonmetastatic. We also identify in a mouse model that ENTPD1 expression is induced by UVR in an IL-27-dependent manner. Finally, increased extracellular ADO is shown to downregulate the expression of NAP1L2, a nucleosome assembly protein we show to be important for DNA damage repair secondary to UVR. Together, these data suggest a role for ENTPD1 expression on skin-resident T cells to regulate DNA damage repair through purinergic signaling to promote skin carcinogenesis and metastasis.


Asunto(s)
Adenosina/fisiología , Apirasa/fisiología , Carcinoma de Células Escamosas/patología , Reparación del ADN , Neoplasias Cutáneas/patología , Rayos Ultravioleta/efectos adversos , Apirasa/análisis , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/inmunología , Daño del ADN , Factores de Transcripción Forkhead/análisis , Humanos , Interleucina-27/fisiología , Células T de Memoria/inmunología , Metástasis de la Neoplasia , Receptor de Muerte Celular Programada 1/análisis , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/inmunología
20.
Oxid Med Cell Longev ; 2021: 6653790, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815656

RESUMEN

Mn(III) ortho-N-alkyl- and N-alkoxyalkyl porphyrins (MnPs) were initially developed as superoxide dismutase (SOD) mimics. These compounds were later shown to react with numerous reactive species (such as ONOO-, H2O2, H2S, CO3 •-, ascorbate, and GSH). Moreover, the ability of MnPs to oxidatively modify activities of numerous proteins has emerged as their major mechanism of action both in normal and in cancer cells. Among those proteins are transcription factors (NF-κB and Nrf2), mitogen-activated protein kinases, MAPKs, antiapoptotic bcl-2, and endogenous antioxidative defenses. The lead Mn porphyrins, namely, MnTE-2-PyP5+ (BMX-010, AEOL10113), MnTnBuOE-2-PyP5+ (BMX-001), and MnTnHex-2-PyP5+, were tested in numerous injuries of normal tissue and cellular and animal cancer models. The wealth of the data led to the progression of MnTnBuOE-2-PyP5+ into four Phase II clinical trials on glioma, head and neck cancer, anal cancer, and multiple brain metastases, while MnTE-2-PyP5+ is in Phase II clinical trial on atopic dermatitis and itch.


Asunto(s)
Antineoplásicos/farmacología , Peróxido de Hidrógeno/farmacología , Manganeso/farmacología , Porfirinas/farmacología , Transducción de Señal , Animales , Disponibilidad Biológica , Humanos , Porfirinas/química , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA