Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Biochem Pharmacol ; 219: 115914, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956895

RESUMEN

An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.


Asunto(s)
Insuficiencia Cardíaca , Neoplasias , Humanos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Fibroblastos/metabolismo , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Remodelación Ventricular
2.
Am J Physiol Heart Circ Physiol ; 321(5): H976-H984, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34559578

RESUMEN

Heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF) often arises from a prolonged LV pressure overload (LVPO) and accompanied by abnormal extracellular matrix (ECM) accumulation. The E3 ubiquitin ligase WWP1 is a fundamental determinant ECM turnover. We tested the hypothesis that genetic ablation of Wwp1 would alter the progression of LVPO-induced HFpEF. LV echocardiography in mice with global Wwp1 deletion (n = 23; Wwp1-/-) was performed at 12 wk of age (baseline) and then at 2 and 4 wk following LVPO (transverse aortic banding) or surgery without LVPO induction. Age-matched wild-type mice (Wwp1+/+; n = 23) underwent identical protocols. LV EF remained constant and unchanged with LVPO and LV mass increased in both groups but was lower in the Wwp1-/- mice. With LVPO, the E/A ratio, an index of LV filling, was 3.97 ± 0.46 in Wwp1+/+ but was 1.73 ± 0.19 in the Wwp1-/- group (P < 0.05). At the transcriptional level, mRNA for fibrillar collagens (types I and III) decreased by approximately 50% in Wwp1-/- compared with the Wwp1+/+ group at 4 wk post-LVPO (P < 0.05) and was paralleled by a similar difference in LV fibrillar collagen content as measured by histochemistry. Moreover, mRNA levels for determinants favoring ECM accumulation, such as transforming growth factor (TGF), increased with LVPO, but were lower in the Wwp1-/- group. The absence of Wwp1 reduced the development of left ventricular hypertrophy and subsequent progression to HFpEF. Modulating the WWP1 pathway could be a therapeutic target to alter the natural history of HFpEF.NEW & NOTEWORTHY Heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF) often arises from a prolonged LV pressure overload (LVPO) and is accompanied by abnormal extracellular matrix (ECM) accumulation. It is now recognized that the ECM is a dynamic entity that is regulated at multiple post-transcriptional levels, including the E3 ubiquitin ligases, such as WWP1. In the present study, WWP1 deletion in the context of an LVPO stimulus reduced functional indices of HFpEF progression and determinants of ECM remodeling.


Asunto(s)
Insuficiencia Cardíaca/enzimología , Ventrículos Cardíacos/enzimología , Hipertrofia Ventricular Izquierda/enzimología , Ubiquitina-Proteína Ligasas/deficiencia , Disfunción Ventricular Izquierda/enzimología , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Aorta/fisiopatología , Aorta/cirugía , Diástole , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Colágenos Fibrilares/genética , Colágenos Fibrilares/metabolismo , Eliminación de Gen , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Tiempo , Ubiquitina-Proteína Ligasas/genética , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
3.
Int Heart J ; 62(5): 1096-1105, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34544982

RESUMEN

While cardiac imaging has improved the diagnosis and risk assessment for cardiac sarcoidosis (CS), treatment regimens have consisted of generalized heart failure therapies and non-specific anti-inflammatory regimens. The overall goal of this study was to perform high-sensitivity plasma profiling of specific inflammatory pathways in patients with sarcoidosis and with CS.Specific inflammatory/proteolytic cascades were upregulated in sarcoidosis patients, and certain profiles emerged for CS patients.Plasma samples were collected from patients with biopsy-confirmed sarcoidosis undergoing F-18 fluorodeoxyglucose positron emission tomography (n = 47) and compared to those of referent control subjects (n = 6). Using a high-sensitivity, automated multiplex array, cytokines, soluble cytokine receptor profiles (an index of cytokine activation), as well as matrix metalloproteinase (MMP), and endogenous MMP inhibitors (TIMPs) were examined.The plasma tumor necrosis factor (TNF) and soluble TNF receptors sCD30 and sTNFRI were increased using sarcoidosis, and sTNFRII increased in CS patients (n = 18). The soluble interleukin sIL-2R and vascular endothelial growth factor receptors (sVEGFR2 and sVEGFR3) increased to the greatest degree in CS patients. When computed as a function of referent control values, the majority of soluble cytokine receptors increased in both sarcoidosis and CS groups. Plasma MMP-9 levels increased in sarcoidosis but not in the CS subset. Plasma TIMP levels declined in both groups.The findings from this study were the identification of increased activation of a cluster of soluble cytokine receptors, which augment not only inflammatory cell maturation but also transmigration in patients with sarcoidosis and patients with cardiac involvement.


Asunto(s)
Citocinas/metabolismo , Cardiopatías/diagnóstico , Tomografía de Emisión de Positrones/métodos , Sarcoidosis/diagnóstico , Anciano , Biomarcadores/metabolismo , Estudios de Casos y Controles , Estudios de Evaluación como Asunto , Femenino , Fluorodesoxiglucosa F18/administración & dosificación , Cardiopatías/sangre , Cardiopatías/complicaciones , Cardiopatías/patología , Humanos , Inmunosupresores/efectos adversos , Inmunosupresores/uso terapéutico , Inflamación/metabolismo , Masculino , Inhibidores de la Metaloproteinasa de la Matriz/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Persona de Mediana Edad , Estudios Prospectivos , Radiofármacos/administración & dosificación , Receptores de Interleucina-2/metabolismo , Receptores del Factor de Necrosis Tumoral/sangre , Medición de Riesgo , Sarcoidosis/sangre , Sarcoidosis/complicaciones , Sarcoidosis/patología , Índice de Severidad de la Enfermedad , Factor de Necrosis Tumoral alfa/sangre , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
J Pharmacol Exp Ther ; 375(2): 296-307, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32958629

RESUMEN

Infarct expansion can occur after myocardial infarction (MI), which leads to adverse left ventricular (LV) remodeling and failure. An imbalance between matrix metalloproteinase (MMP) induction and tissue inhibitors of MMPs (TIMPs) can accelerate this process. Past studies have shown different biologic effects of TIMP-3, which may depend upon specific domains within the TIMP-3 molecule. This study tested the hypothesis that differential effects of direct myocardial injections of either a full-length recombinant TIMP-3 (F-TIMP-3) or a truncated form encompassing the N-terminal region (N-TIMP-3) could be identified post-MI. MI was induced in pigs that were randomized for MI injections (30 mg) and received targeted injections within the MI region of F-TIMP-3 (n = 8), N-TIMP-3 (n = 9), or saline injection (MI-only, n = 11). At 14 days post-MI, LV ejection fraction fell post-MI but remained higher in both TIMP-3 groups. Tumor necrosis factor and interleukin-10 mRNA increased by over 10-fold in the MI-only and N-TIMP-3 groups but were reduced with F-TIMP-3 at this post-MI time point. Direct MI injection of either a full-length or truncated form of TIMP-3 is sufficient to favorably alter the course of post-MI remodeling. The functional and differential relevance of TIMP-3 domains has been established in vivo since the TIMP-3 constructs demonstrated different MMP/cytokine expression profiles. These translational studies identify a unique and more specific therapeutic strategy to alter the course of LV remodeling and dysfunction after MI. SIGNIFICANCE STATEMENT: Using different formulations of tissue inhibitor of matrix metalloproteinase-3 (TIMP-3), when injected into the myocardial infarction (MI) region, slowed the progression of indices of left ventricular (LV) failure, suggesting that the N terminus of TIMP-3 is sufficient to attenuate early adverse functional events post-MI. Injections of full-length recombinant TIMP-3, but not of the N-terminal region of TIMP-3, reduced relative indices of inflammation at the mRNA level, suggesting that the C-terminal region affects other biological pathways. These unique proof-of-concept studies demonstrate the feasibility of using recombinant small molecules to selectively interrupt adverse LV remodeling post-MI.


Asunto(s)
Infarto del Miocardio/patología , Fragmentos de Péptidos/farmacología , Inhibidor Tisular de Metaloproteinasa-3/química , Remodelación Ventricular/efectos de los fármacos , Secuencia de Aminoácidos , Colágeno/genética , Citocinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inyecciones , Metaloproteinasas de la Matriz/genética , Fragmentos de Péptidos/química , Dominios Proteicos , ARN Mensajero/genética , Inhibidor Tisular de Metaloproteinasa-3/genética
5.
Nat Rev Cardiol ; 17(8): 523-531, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31686012

RESUMEN

A prolonged state of left ventricular pressure overload, commonly caused by hypertension and aortic valve disease, promotes remodelling of the myocardium that can progress to heart failure with preserved ejection fraction (HFpEF). In animal models, a major factor driving progression from pressure-overload hypertrophy (POH) to HFpEF is the activation and proliferation of an abnormal fibroblast phenotype that is resistant to apoptosis, degrades normal stromal matrix and is replaced with a fibrotic matrix structure. A similar fibroblast phenotype has been identified in the stroma of solid cancers. This cancer-associated fibroblast drives tumour growth and invasion. The proliferation and expansion of these abnormal fibroblast populations in both HFpEF and cancer contribute to progression of disease. In early-phase clinical trials, chemotherapeutic agents targeting cancer-associated fibroblasts had antitumour properties. In this Perspectives article, we postulate that, because the abnormal fibroblast populations in POH and cancer have identical characteristics, chemotherapeutic agents targeting the POH-related fibroblast might attenuate the development of myocardial fibrosis, a pathophysiological hallmark of HFpEF. These agents must be designed to target the abnormal fibroblasts with high specificity because many classes of chemotherapeutic drugs can themselves cause myocardial dysfunction and heart failure.


Asunto(s)
Fibroblastos , Insuficiencia Cardíaca , Neoplasias , Animales , Cardiomiopatías , Progresión de la Enfermedad , Fibroblastos/citología , Fibroblastos/patología , Fibrosis , Humanos
6.
Heart Rhythm ; 16(5): 743-753, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30476543

RESUMEN

BACKGROUND: Predicting a favorable cardiac resynchronization therapy (CRT) response holds great clinical importance. OBJECTIVE: The purpose of this study was to examine proteins from broad biological pathways and develop a prediction tool for response to CRT. METHODS: Plasma was collected from patients before CRT (SMART-AV [SmartDelay Determined AV Optimization: A Comparison to Other AV Delay Methods Used in Cardiac Resynchronization Therapy] trial). A CRT response was prespecified as a ≥15-mL reduction in left ventricular end-systolic volume at 6 months, which resulted in a binary CRT response (responders 52%, nonresponders 48%; n = 758). RESULTS: Candidate proteins (n = 74) were evaluated from the inflammatory, signaling, and structural domains, which yielded 12 candidate biomarkers, but only a subset of these demonstrated predictive value for CRT response: soluble suppressor of tumorgenicity-2, soluble tumor necrosis factor receptor-II, matrix metalloproteinase-2, and C-reactive protein. These biomarkers were used in a composite categorical scoring algorithm (Biomarker CRT Score), which identified patients with a high/low probability of a response to CRT (P <.001) when adjusted for a number of clinical covariates. For example, a Biomarker CRT Score of 0 yielded 5 times higher odds of a response to CRT compared to a Biomarker CRT Score of 4 (P <.001). The Biomarker CRT Score demonstrated additive predictive value when considered against a composite of clinical variables. CONCLUSION: These unique findings demonstrate that developing a biomarker panel for predicting individual response to CRT is feasible and holds potential for point-of-care testing and integration into evaluation algorithms for patients presenting for CRT.


Asunto(s)
Proteína C-Reactiva/análisis , Terapia de Resincronización Cardíaca , Insuficiencia Cardíaca , Metaloproteinasa 2 de la Matriz/análisis , Receptores Tipo II del Factor de Necrosis Tumoral/análisis , Anciano , Biomarcadores/sangre , Terapia de Resincronización Cardíaca/efectos adversos , Terapia de Resincronización Cardíaca/métodos , Femenino , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Humanos , Masculino , Evaluación de Resultado en la Atención de Salud/métodos , Periodo Posoperatorio , Valor Predictivo de las Pruebas , Pronóstico
7.
Am J Physiol Heart Circ Physiol ; 315(5): H1443-H1452, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30141982

RESUMEN

Anthracycline chemotherapy (AC) is associated with decline in left ventricular ejection fraction (LVEF), yet the mechanisms remain unclear. Although changes in microRNAs (miRs) have been identified in adult cardiovascular disease, miR profiles in pediatric patients with AC have not been well studied. The goal of this study was to examine miR profiles (unbiased array) in pediatric patients with AC compared with age-matched referent normal patients. We hypothesize that pediatric patients with AC will express a unique miR profile at the initiation and completion of therapy and will be related to LVEF. Serum was collected in pediatric patients (10-22 yr, n = 12) with newly diagnosed malignancy requiring AC within 24-48 h after the initiation of therapy (30-60 mg/m2) and ~1 yr after completing therapy. A custom microarray of 84 miRs associated with cardiovascular disease was used (quantitative RT-PCR) and indexed to referent normal profiles (13-17 yr, n = 17). LVEF was computed by cardiac MRI. LVEF fell from AC initiation at ~1 yr after AC completion (64.28 ± 1.78% vs. 57.53 ± 0.95%, respectively, P = 0.004). Of the 84 miRs profiled, significant shifts in 17 miRs occurred relative to referent normal ( P ≤ 0.05). Moreover, the functional domain of miRs associated with myocardial differentiation and development fell over threefold at the completion of AC ( P ≤ 0.05). Moreover, eight miRs were significantly downregulated after AC completion in those patients with the greatest decline in LVEF (≥10%, P < 0.05). This study demonstrates, for the first time, that changes in miR expression occur in pediatric patients with AC. These findings suggest that miRs are a potential strategy for the early identification of patients with AC susceptible to left ventricular dysfunction. NEW & NOTEWORTHY Although anthracycline chemotherapy (AC) is effective for a number of pediatric cancers, an all too often consequence of AC is the development of left ventricular failure. The present study identified that specific shifts in the pattern of microRNAs, which regulate myocardial growth, function, and viability, occurred during and after AC in pediatric patients, whereby the magnitude of this shift was associated with the degree of left ventricular failure.


Asunto(s)
Antraciclinas/efectos adversos , Antibióticos Antineoplásicos/efectos adversos , MicroARN Circulante/genética , Neoplasias/tratamiento farmacológico , Transcriptoma , Disfunción Ventricular Izquierda/genética , Adolescente , Factores de Edad , Cardiotoxicidad , Estudios de Casos y Controles , Niño , MicroARN Circulante/sangre , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Imagen por Resonancia Magnética , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Riesgo , Volumen Sistólico/efectos de los fármacos , Volumen Sistólico/genética , Resultado del Tratamiento , Disfunción Ventricular Izquierda/sangre , Disfunción Ventricular Izquierda/inducido químicamente , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/efectos de los fármacos , Función Ventricular Izquierda/genética , Adulto Joven
8.
Artículo en Inglés | MEDLINE | ID: mdl-29900007

RESUMEN

BACKGROUND: Anthracycline induced cardiomyopathy is a major cause of mortality and morbidity among pediatric cancer survivors. It has been postulated that oxidative stress induction and inflammation may play a role in the pathogenesis of this process. Accordingly, the present study performed an assessment of biomarker profiles and functional imaging parameters focused upon potential early determinants of anthracycline induced cardiomyopathy. METHODS: Patients (10-22 years) were prospectively enrolled between January 2013 and November 2014. Thirteen subjects completed the study and underwent serial cardiac magnetic resonance imaging and plasma biomarker profiling performed 24-48 h after the first anthracycline dose and at set dose intervals. In addition, we collected plasma samples from 62 healthy controls to examine normal plasma biomarker profiles. RESULTS: Left ventricular ejection fraction (LVEF) decreased from 64.3 ± 6.2 at the first visit to 57.5 ± 3.3 (p = 0.004) 1 year after chemotherapy. A decline in longitudinal strain magnitude occurred at lower cumulative doses. A differential inflammatory/matrix signature emerged in anthracycline induced cardiomyopathy patients compared to normal including increased interleukin-8 and MMP levels. With longer periods of anthracycline dosing, MMP-7, a marker of macrophage proteolytic activation, increased by 165 ± 54% whereas interleukin-10 an anti-inflammatory marker decreased by 75 ± 13% (both p < 0.05). MMP7 correlated with time dependent changes in EF. CONCLUSIONS: Asymptomatic pediatric patients exposed to anthracycline therapy develop abnormal strain parameters at lower cumulative doses when compared to changes in EF. A differential biomarker signature containing both inflammatory and matrix domains occur early in anthracycline treatment. Dynamic changes in these domains occur with increased anthracycline doses and progression to anthracycline induced cardiomyopathy. These findings provide potential prognostic and mechanistic insights into the natural history of anthracycline induced cardiomyopathy. TRIAL REGISTRATION NUMBER: NCT03211520 Date of Registration February 13, 2017, retrospectively registered.

9.
J Thorac Cardiovasc Surg ; 156(2): 568-575, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29609885

RESUMEN

BACKGROUND: Although strategies have focused on myocardial salvage/regeneration in the context of an acute coronary syndrome and a myocardial infarction (MI), interventions targeting the formed MI region and altering the course of the post-MI remodeling process have not been as well studied. This study tested the hypothesis that localized high-frequency stimulation instituted within a formed MI region using low-amplitude electrical pulses would favorably change the trajectory of changes in left ventricle geometry and function. METHODS: At 7 days following MI induction, pigs were randomized for localized high-frequency stimulation (n = 5, 240 bpm, 0.8 V, and 0.05 ms pulses) or unstimulated (n = 6). Left ventricle geometry and function were measured at baseline (pre-MI) and at 7, 14, 21, and 28 days post-MI using echocardiography. MI size at 28 days post-MI was determined by histochemical staining and planimetry. RESULTS: At 7 days post-MI and before randomization to localized high-frequency stimulation, left ventricular ejection fraction and end-diastolic volume was equivalent. However, when compared with 7-day post-MI values, left ventricle end-diastolic volume increased in a time-dependent manner in the MI unstimulated group, but the relative increase in left ventricle end-diastolic volume was reduced in the MI localized high-frequency stimulation group. For example, by 28 days post-MI, left ventricle end-diastolic volume increased by 32% in the MI unstimulated group but only by 12% in the MI localized high-frequency stimulation group (P < .05). Whereas left ventricular ejection fraction appeared unchanged between MI groups, estimates of pulmonary capillary wedge pressure, a marker of adverse left ventricle performance and progression to failure, increased by 62% in the MI unstimulated group and actually decreased by 17% in the MI localized high-frequency stimulation group when compared with 7-day post-MI values (P < .05). MI size was equivalent between the MI groups, indicative of no difference in the extent of absolute myocardial injury. CONCLUSIONS: The unique findings from this study are 2-fold. First, targeting the MI region following the resolution of the acute event using a localized stimulation approach is feasible. Second, localized stimulation modified a key parameter of adverse post-MI remodeling (dilation) and progression to heart failure. These findings demonstrate that the MI region itself is a modifiable tissue and responsive to localized electrical stimulation.


Asunto(s)
Estimulación Eléctrica/métodos , Ventrículos Cardíacos/efectos de la radiación , Infarto del Miocardio , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/efectos de la radiación , Animales , Ecocardiografía , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Porcinos
10.
Arterioscler Thromb Vasc Biol ; 36(4): 636-46, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26916734

RESUMEN

OBJECTIVE: Basigin (Bsg) is a transmembrane glycoprotein that activates matrix metalloproteinases and promotes inflammation. However, the role of Bsg in the pathogenesis of cardiac hypertrophy and failure remains to be elucidated. We examined the role of Bsg in cardiac hypertrophy and failure in mice and humans. APPROACH AND RESULTS: We performed transverse aortic constriction in Bsg(+/-) and in wild-type mice. Bsg(+/-) mice showed significantly less heart and lung weight and cardiac interstitial fibrosis compared with littermate controls after transverse aortic constriction. Both matrix metalloproteinase activities and oxidative stress in loaded left ventricle were significantly less in Bsg(+/-) mice compared with controls. Echocardiography showed that Bsg(+/-) mice showed less hypertrophy, less left ventricular dilatation, and preserved left ventricular fractional shortening compared with littermate controls after transverse aortic constriction. Consistently, Bsg(+/-) mice showed a significantly improved long-term survival after transverse aortic constriction compared with Bsg(+/+) mice, regardless of the source of bone marrow (Bsg(+/+) or Bsg(+/-)). Conversely, cardiac-specific Bsg-overexpressing mice showed significantly poor survival compared with littermate controls. Next, we isolated cardiac fibroblasts and examined their responses to angiotensin II or mechanical stretch. Both stimuli significantly increased Bsg expression, cytokines/chemokines secretion, and extracellular signal-regulated kinase/Akt/JNK activities in Bsg(+/+) cardiac fibroblasts, all of which were significantly less in Bsg(+/-) cardiac fibroblasts. Consistently, extracellular and intracellular Bsg significantly promoted cardiac fibroblast proliferation. Finally, serum levels of Bsg were significantly elevated in patients with heart failure and predicted poor prognosis. CONCLUSIONS: These results indicate the crucial roles of intracellular and extracellular Bsg in the pathogenesis of cardiac hypertrophy, fibrosis, and failure in mice and humans.


Asunto(s)
Enfermedades de la Aorta/complicaciones , Basigina/metabolismo , Insuficiencia Cardíaca/etiología , Hipertrofia Ventricular Izquierda/etiología , Miocardio/metabolismo , Disfunción Ventricular Izquierda/etiología , Angiotensina II/farmacología , Animales , Animales Recién Nacidos , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/fisiopatología , Basigina/genética , Proteínas Sanguíneas/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/prevención & control , Mediadores de Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Metaloproteinasas de la Matriz/metabolismo , Mecanotransducción Celular , Ratones Noqueados , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda
11.
Ann Thorac Surg ; 99(2): 597-603, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25524397

RESUMEN

BACKGROUND: There is continued need for therapies which reverse or abate the remodeling process after myocardial infarction (MI). In this study, we evaluate the longitudinal effects of calcium hydroxyapatite microsphere gel on regional strain, global ventricular function, and mitral regurgitation (MR) in a porcine MI model. METHODS: Twenty-five Yorkshire swine were enrolled. Five were dedicated weight-matched controls. Twenty underwent posterolateral infarction by direct ligation of the circumflex artery and its branches. Infarcted animals were randomly divided into the following 4 groups: 1-week treatment; 1-week control; 4-week treatment; and 4-week control. After infarction, animals received either twenty 150 µL calcium hydroxyapatite gel or saline injections within the infarct. At their respective time points, echocardiograms, cardiac magnetic resonance imaging, and tissue were collected for evaluation of MR, regional and global left ventricular function, wall thickness, and collagen content. RESULTS: Global and regional left ventricular functions were depressed in all infarcted subjects at 1 week compared with healthy controls. By 4-weeks post-infarction, global function had significantly improved in the calcium hydroxyapatite group compared with infarcted controls (ejection fraction 0.485 ± 0.019 vs 0.38 ± 0.017, p < 0.01). Similarly, regional borderzone radial contractile strain (16.3% ± 1.5% vs 11.2% ± 1.5%, p = 0.04), MR grade (0.4 ± 0.2 vs 1.2 ± 0.2, p = 0.04), and infarct thickness (7.8 ± 0.5 mm vs 4.5 ± 0.2 mm, p < 0.01) were improved at this time point in the treatment group compared with infarct controls. CONCLUSIONS: Calcium hydroxyapatite injection after MI progressively improves global left ventricular function, borderzone function, and mitral regurgitation. Using novel biomaterials to augment infarct material properties is a viable alternative in the current management of heart failure.


Asunto(s)
Materiales Biocompatibles/administración & dosificación , Durapatita/administración & dosificación , Geles/administración & dosificación , Microesferas , Insuficiencia de la Válvula Mitral/terapia , Contracción Miocárdica , Infarto del Miocardio/terapia , Función Ventricular , Animales , Inyecciones Intralesiones , Masculino , Insuficiencia de la Válvula Mitral/etiología , Recuperación de la Función , Porcinos
12.
J Pharmacol Exp Ther ; 350(3): 701-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25022514

RESUMEN

A treatment target for progressive left ventricular (LV) remodeling prevention following myocardial infarction (MI) is to affect structural changes directly within the MI region. One approach is through targeted injection of biocomposite materials, such as calcium hydroxyapatite microspheres (CHAM), into the MI region. In this study, the effects of CHAM injections upon key cell types responsible for the MI remodeling process, the macrophage and fibroblast, were examined. MI was induced in adult pigs before randomization to CHAM injections (20 targeted 0.1-ml injections within MI region) or saline. At 7 or 21 days post-MI (n = 6/time point per group), cardiac magnetic resonance imaging was performed, followed by macrophage and fibroblast isolation. Isolated macrophage profiles for monocyte chemotactic macrophage inflammatory protein-1 as measured by real-time polymerase chain reaction increased at 7 days post-MI in the CHAM group compared with MI only (16.3 ± 6.6 versus 1.7 ± 0.6 cycle times values, P < 0.05), and were similar by 21 days post-MI. Temporal changes in fibroblast function and smooth muscle actin (SMA) expression relative to referent control (n = 5) occurred with MI. CHAM induced increases in fibroblast proliferation, migration, and SMA expression-indicative of fibroblast transformation. By 21 days, CHAM reduced LV dilation (diastolic volume: 75 ± 2 versus 97 ± 4 ml) and increased function (ejection fraction: 48 ± 2% versus 38 ± 2%) compared with MI only (both P < 0.05). This study identified that effects on macrophage and fibroblast differentiation occurred with injection of biocomposite material within the MI, which translated into reduced adverse LV remodeling. These unique findings demonstrate that biomaterial injections impart biologic effects upon the MI remodeling process over any biophysical effects.


Asunto(s)
Materiales Biocompatibles/administración & dosificación , Modelos Animales de Enfermedad , Fibroblastos/fisiología , Macrófagos/fisiología , Infarto del Miocardio/tratamiento farmacológico , Remodelación Ventricular/fisiología , Animales , Sistemas de Liberación de Medicamentos , Durapatita/administración & dosificación , Fibroblastos/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Inyecciones , Macrófagos/efectos de los fármacos , Microesferas , Infarto del Miocardio/patología , Fenotipo , Distribución Aleatoria , Porcinos , Remodelación Ventricular/efectos de los fármacos
13.
Circ Res ; 114(9): 1435-45, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24637197

RESUMEN

RATIONALE: Myocardial infarction (MI) causes an imbalance between matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases (TIMPs) and is associated with adverse left ventricular (LV) remodeling. A uniform reduction in TIMP-4 post-MI has been observed. OBJECTIVE: To examine post-MI remodeling with cardiac-restricted overexpression of TIMP-4, either through a transgenic or viral delivery approach. METHODS AND RESULTS: MI was induced in mice and then randomized to targeted injection of an adenoviral construct (10 µL; 8×10(9) plaque forming units/mL) encoding green fluorescent protein (GFP) and the full-length human TIMP-4 (Ad-GFP-TIMP4) or GFP. A transgenic construct with cardiac-restricted overexpression TIMP-4 (hTIMP-4exp) was used in a parallel set of studies. LV end-diastolic volume, an index of LV remodeling, increased by >60% from baseline at 5 days post-MI and by >100% at 21 days post-MI in the Ad-GFP only group. However, LV dilation was reduced by ≈50% in both the Ad-GFP-TIMP4 and hTIMP-4exp groups at these post-MI time points. LV ejection fraction was improved with either Ad-GFP-TIMP-4 or hTIMP-4exp. Fibrillar collagen expression and content were increased within the MI region with both TIMP-4 interventions, suggestive of matrix stabilization. CONCLUSIONS: This study is the first to demonstrate that selective myocardial targeting for TIMP-4 induction through either a viral or transgenic approach favorably altered the course of adverse LV remodeling post-MI. Thus, localized induction of endogenous matrix metalloproteinase inhibitors, such as TIMP-4, holds promise as a means to interrupt the progression of post-MI remodeling.


Asunto(s)
Marcación de Gen , Técnicas de Transferencia de Gen , Infarto del Miocardio/terapia , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Adenoviridae/genética , Animales , Apoptosis , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Colágenos Fibrilares/genética , Colágenos Fibrilares/metabolismo , Regulación de la Expresión Génica , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Transgénicos , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Recuperación de la Función , Volumen Sistólico , Factores de Tiempo , Inhibidores Tisulares de Metaloproteinasas/genética , Inhibidor Tisular de Metaloproteinasa-4
14.
Am J Physiol Heart Circ Physiol ; 306(1): H53-9, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24163074

RESUMEN

Recent studies suggest that an increase in apoptosis within the myocardium may be a contributing factor for the progression of late adverse left ventricular (LV) remodeling following myocardial infarction (MI). Given that apoptosis is often triggered by induction of the mitochondrial permeability transition (MPT) pore, the goal of this study was to evaluate the therapeutic efficacy of cyclosporin A (CsA), an MPT blocker, to prevent cells from undergoing apoptosis and consequently attenuate late LV remodeling post-MI. MI was induced in C57BL/6 mice and then randomized to either vehicle or CsA groups. Beginning 48 h after surgery after infarction had already occurred, mice were gavaged with CsA (2 mg/kg) or vehicle once daily. LV end-diastolic volume and LV ejection fraction were assessed by echocardiography before MI induction and terminally at either 7 days (n = 7) or 28 days (n = 8) post-MI. LV end-diastolic volume increased and LV ejection fraction decreased in all MI groups with no difference between the CsA-treated and untreated groups. After vehicle and CsA, areas of necrosis were present at 7 and 28 days post-MI with no difference between treatment groups. Caspase-3 activity and terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling in distal nonnecrotic LV both increased after MI but were lower in CsA-treated mice compared with vehicle (P < 0.05). In conclusion, CsA decreased apoptosis occurring late after MI, confirming involvement of a CsA-sensitive MPT in the cell death. However, CsA-mediated reduction in apoptosis in non-MI myocardium was not beneficial against late pump dysfunction occurring during post-MI remodeling.


Asunto(s)
Ciclosporina/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Remodelación Ventricular/efectos de los fármacos , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Ciclosporina/administración & dosificación , Ciclosporina/farmacología , Electrocardiografía , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Volumen Sistólico/efectos de los fármacos
15.
J Thorac Cardiovasc Surg ; 147(3): 902-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23870160

RESUMEN

OBJECTIVE: Neonatal cardiac surgery requiring cardiopulmonary bypass results in a heightened inflammatory response. Perioperative glucocorticoid administration is commonly used in an attempt to reduce the inflammatory cascade, although characterization of the cytokine response to steroids in neonatal cardiac surgery remains elusive because of highly variable approaches in administration. This randomized trial was designed to prospectively evaluate the effect of specific glucocorticoid dosing protocols on inflammatory markers in neonatal cardiac surgery requiring cardiopulmonary bypass. METHODS: Neonates scheduled for cardiac surgery were randomly assigned to receive either 2-dose (8 hours preoperatively and operatively, n = 36) or single-dose (operatively, n = 32) methylprednisolone at 30 mg/kg per dose in a prospective double-blind trial. The primary outcome was the effect of these steroid regimens on markers of inflammation. Secondary analyses evaluated the association of specific cytokine profiles with postoperative clinical outcomes. RESULTS: Patient demographics, perioperative variables, and preoperative indices of inflammation were similar between the single- and 2-dose groups. Preoperative cytokine response after the 2-dose methylprednisolone protocol was consistent with an anti-inflammatory effect, although this did not persist into the postoperative period. Premedication baseline levels of interleukin-6, interleukin-8, interleukin-10, and tumor necrosis factor α were predictive of postoperative intensive care unit and hospital length of stay. Only interleukin-8 demonstrated a postoperative response associated with duration of intensive care unit and hospital stay. CONCLUSIONS: The addition of a preoperative dose of methylprednisolone to a standard intraoperative methylprednisolone dose does not improve markers of inflammation after neonatal cardiac surgery. The routine administration of preoperative glucocorticoids in neonatal cardiac surgery should be reconsidered.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/efectos adversos , Puente Cardiopulmonar/efectos adversos , Citocinas/sangre , Glucocorticoides/administración & dosificación , Mediadores de Inflamación/sangre , Inflamación/prevención & control , Metilprednisolona/administración & dosificación , Biomarcadores/sangre , Método Doble Ciego , Esquema de Medicación , Femenino , Humanos , Recién Nacido , Inflamación/sangre , Inflamación/inmunología , Unidades de Cuidado Intensivo Neonatal , Tiempo de Internación , Masculino , Cuidados Preoperatorios , Estudios Prospectivos , South Carolina , Factores de Tiempo , Resultado del Tratamiento
16.
Circulation ; 128(11 Suppl 1): S186-93, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-24030405

RESUMEN

BACKGROUND: Thoracic aortic aneurysms (TAAs) develop secondary to abnormal aortic extracellular matrix remodeling, resulting in a weakened and dilated aortic wall that progressed to rupture if left unattended. Currently, no diagnostic/prognostic tests are available for the detection of TAA disease. This is largely driven by the lack of a large animal model, which would permit longitudinal/mechanistic studies. Accordingly, the objective of the present study was to establish a reproducible porcine model of aortic dilatation, which recapitulates the structural and biochemical changes observed during human TAA development. METHODS AND RESULTS: Descending TAAs were induced in Yorkshire pigs (20-25 kg; n=7) through intra-adventitial injections of collagenase (5 mL, 0.35 mg/mL) and periadventitial application of crystalline CaCl2 (0.5 g). Three weeks after TAA induction, aortas were harvested and tissue was collected for biochemical and histological measurements. A subset of animals underwent MRI preoperatively and at terminal surgery. Results were compared with sham-operated controls (n=6). Three weeks after TAA induction, aortic luminal area increased by 38 ± 13% (P=0.018 versus control). Aortic structural changes included elastic lamellar degradation and decreased collagen content. The protein abundance of matrix metalloproteinases 3, 8, 9, and 12 increased in TAA tissue homogenates, whereas tissue inhibitors of metalloproteinases 1 and 4 decreased. CONCLUSIONS: These data demonstrate aortic dilatation, aortic medial degeneration, and alterations in matrix metalloproteinase/tissue inhibitors of metalloproteinase abundance, consistent with TAA formation. This study establishes for the first time a large animal model of TAA that recapitulates the hallmarks of human disease and provides a reproducible test bed for examining diagnostic, prognostic, and therapeutic strategies.


Asunto(s)
Aneurisma de la Aorta Torácica/metabolismo , Aneurisma de la Aorta Torácica/patología , Modelos Animales de Enfermedad , Animales , Masculino , Reproducibilidad de los Resultados , Porcinos
17.
Ann Thorac Surg ; 96(4): 1442-1449, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23968766

RESUMEN

BACKGROUND: Longevity of the superior cavopulmonary connection (SCPC) is limited by the development of pulmonary arteriovenous malformations (PAVM). The goal of this study was to determine whether phenotypic changes in pulmonary artery endothelial cells (PAEC) that favor angiogenesis occur with PAVM formation. METHODS: A superior vena cava to right pulmonary artery connection was constructed in 5 pigs. Pulmonary arteries were harvested at 6 to 8 weeks after surgery to establish cultures of PAEC and smooth muscle cells, to determine cell proliferation, gene expression, and tubule formation. Abundance of proteins related to angiogenesis was measured in lung tissue. RESULTS: Contrast echocardiography revealed right-to-left shunting, consistent with PAVM formation. While the proliferation of smooth muscle cells from the right pulmonary artery (shunted side) and left pulmonary artery (nonshunted side) were similar, right PAEC proliferation was significantly higher. Expression profiles of genes encoding cellular signaling proteins were higher in PAECs from the right pulmonary artery versus left pulmonary artery. Protein abundance of angiopoietin-1, and Tie-2 (angiopoietin receptor) were increased in the right lung (both p < 0.05). Tubule formation was increased in endothelial cells from the right pulmonary artery compared with the left pulmonary artery (404 ± 16 versus 199 ± 71 tubules/mm(2), respectively; p < 0.05). CONCLUSIONS: These findings demonstrate that PAVMs developed in a clinically relevant animal model of SCPC concomitantly with differential changes in PAEC proliferative ability and phenotype. Moreover, there was a significant increase in the angiopoietin/Tie-2 complex in the right lung, which may provide novel therapeutic targets to attenuate PAVM formation after a SCPC.


Asunto(s)
Malformaciones Arteriovenosas/genética , Malformaciones Arteriovenosas/patología , Células Endoteliales , Endotelio Vascular/citología , Arteria Pulmonar/citología , Anastomosis Quirúrgica , Animales , Modelos Animales de Enfermedad , Femenino , Fenotipo , Porcinos , Procedimientos Quirúrgicos Vasculares/métodos
18.
Antimicrob Agents Chemother ; 57(9): 4114-27, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23774438

RESUMEN

Lethal viral infections produce widespread inflammation with vascular leak, clotting, and bleeding (disseminated intravascular coagulation [DIC]), organ failure, and high mortality. Serine proteases in clot-forming (thrombotic) and clot-dissolving (thrombolytic) cascades are activated by an inflammatory cytokine storm and also can induce systemic inflammation with loss of normal serine protease inhibitor (serpin) regulation. Myxomavirus secretes a potent anti-inflammatory serpin, Serp-1, that inhibits clotting factor X (fX) and thrombolytic tissue- and urokinase-type plasminogen activators (tPA and uPA) with anti-inflammatory activity in multiple animal models. Purified serpin significantly improved survival in a murine gammaherpesvirus 68 (MHV68) infection in gamma interferon receptor (IFN-γR) knockout mice, a model for lethal inflammatory vasculitis. Treatment of MHV68-infected mice with neuroserpin, a mammalian serpin that inhibits only tPA and uPA, was ineffective. Serp-1 reduced virus load, lung hemorrhage, and aortic, lung, and colon inflammation in MHV68-infected mice and also reduced virus load. Neuroserpin suppressed a wide range of immune spleen cell responses after MHV68 infection, while Serp-1 selectively increased CD11c(+) splenocytes (macrophage and dendritic cells) and reduced CD11b(+) tissue macrophages. Serp-1 altered gene expression for coagulation and inflammatory responses, whereas neuroserpin did not. Serp-1 treatment was assessed in a second viral infection, mouse-adapted Zaire ebolavirus in wild-type BALB/c mice, with improved survival and reduced tissue necrosis. In summary, treatment with this unique myxomavirus-derived serpin suppresses systemic serine protease and innate immune responses caused by unrelated lethal viral infections (both RNA and DNA viruses), providing a potential new therapeutic approach for treatment of lethal viral sepsis.


Asunto(s)
Hemorragia/tratamiento farmacológico , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Infecciones por Herpesviridae/tratamiento farmacológico , Infecciones por Herpesviridae/mortalidad , Proteínas de la Membrana/farmacología , Myxoma virus/química , Animales , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Células Dendríticas/patología , Modelos Animales de Enfermedad , Ebolavirus , Factor X/antagonistas & inhibidores , Factor X/metabolismo , Gammaherpesvirinae , Hemorragia/mortalidad , Hemorragia/patología , Hemorragia/virología , Fiebre Hemorrágica Ebola/mortalidad , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/virología , Inflamación/tratamiento farmacológico , Inflamación/mortalidad , Inflamación/patología , Inflamación/virología , Interferón gamma/deficiencia , Interferón gamma/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Proteínas de la Membrana/aislamiento & purificación , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Myxoma virus/fisiología , Neuropéptidos/farmacología , Serpinas/farmacología , Análisis de Supervivencia , Activador de Tejido Plasminógeno/antagonistas & inhibidores , Activador de Tejido Plasminógeno/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Vasculitis/tratamiento farmacológico , Vasculitis/mortalidad , Vasculitis/patología , Vasculitis/virología , Neuroserpina
19.
Trends Cardiovasc Med ; 23(8): 301-11, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23746937

RESUMEN

Acute coronary syndromes can give rise to myocardial injury infarction (MI), which in turn promulgates a series of cellular and extracellular events that result in left ventricular (LV) dilation and dysfunction. Localized strategies focused upon interrupting this inexorable process include delivery of bioactive molecules and stem cell derivatives. These localized treatment strategies are often delivered in a biomaterial complex in order to facilitate elution of the bioactive molecules or stem cell engraftment. However, these biomaterials can impart significant and independent effects upon the MI remodeling process. In addition, significant changes in local cell and interstitial biology within the targeted MI region can occur following injection of certain biomaterials, which may hold important considerations when using these materials as matrices for adjuvant drug/cell therapies.


Asunto(s)
Materiales Biocompatibles/administración & dosificación , Infarto del Miocardio , Trasplante de Células Madre , Remodelación Ventricular/fisiología , Sistemas de Liberación de Medicamentos/métodos , Matriz Extracelular/metabolismo , Humanos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA