Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Med ; 3(11): 727-729, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36370691

RESUMEN

Plants are a rich source of chemotherapeutics and other essential medicines, but plant-based drug supply chains are unsustainable. Writing in Nature, Zhang et al.1 demonstrated a proof-of-concept alternate source of the anticancer drug vinblastine by engineering yeast to convert sugar and amino acids into its direct precursors, catharanthine and vindoline.


Asunto(s)
Antineoplásicos , Catharanthus , Catharanthus/química , Saccharomyces cerevisiae/genética , Antineoplásicos/metabolismo , Reactores Biológicos
2.
Proc Natl Acad Sci U S A ; 119(49): e2215372119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442128

RESUMEN

Tropane alkaloids (TAs) are heterocyclic nitrogenous metabolites found across seven orders of angiosperms, including Malpighiales (Erythroxylaceae) and Solanales (Solanaceae). Despite the well-established euphorigenic properties of Erythroxylaceae TAs like cocaine, their biosynthetic pathway remains incomplete. Using yeast as a screening platform, we identified and characterized the missing steps of TA biosynthesis in Erythroxylum coca. We first characterize putative E. coca polyamine synthase- and amine oxidase-like enzymes in vitro, in yeast, and in planta to show that the first tropane ring closure in Erythroxylaceae occurs via bifunctional spermidine synthase/N-methyltransferases and both flavin- and copper-dependent amine oxidases. We next identify a SABATH family methyltransferase responsible for the 2-carbomethoxy moiety characteristic of Erythroxylaceae TAs and demonstrate that its coexpression with methylecgonone reductase in yeast engineered to express the Solanaceae TA pathway enables the production of a hybrid TA with structural features of both lineages. Finally, we use clustering analysis of Erythroxylum transcriptome datasets to discover a cytochrome P450 of the CYP81A family responsible for the second tropane ring closure in Erythroxylaceae, and demonstrate the function of the core coca TA pathway in vivo via reconstruction and de novo biosynthesis of methylecgonine in yeast. Collectively, our results provide strong evidence that TA biosynthesis in Erythroxylaceae and Solanaceae is polyphyletic and that independent recruitment of unique biosynthetic mechanisms and enzyme classes occurred at nearly every step in the evolution of this pathway.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Coca , Cocaína , Solanaceae , Saccharomyces cerevisiae , Tropanos , Solanaceae/genética , Aminas
3.
J Biol Chem ; 294(51): 19785-19794, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31694919

RESUMEN

Upon immune recognition of viruses, the mammalian innate immune response activates a complex signal transduction network to combat infection. This activation requires phosphorylation of key transcription factors regulating IFN production and signaling, including IFN regulatory factor 3 (IRF3) and STAT1. The mechanisms regulating these STAT1 and IRF3 phosphorylation events remain unclear. Here, using human and mouse cell lines along with gene microarrays, quantitative RT-PCR, viral infection and plaque assays, and reporter gene assays, we demonstrate that a microRNA cluster conserved among bilaterian animals, encoding miR-96, miR-182, and miR-183, regulates IFN signaling. In particular, we observed that the miR-183 cluster promotes IFN production and signaling, mediated by enhancing IRF3 and STAT1 phosphorylation. We also found that the miR-183 cluster activates the IFN pathway and inhibits vesicular stomatitis virus infection by directly targeting several negative regulators of IRF3 and STAT1 activities, including protein phosphatase 2A (PPP2CA) and tripartite motif-containing 27 (TRIM27). Overall, our work reveals an important role of the evolutionarily conserved miR-183 cluster in the regulation of mammalian innate immunity.


Asunto(s)
Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , MicroARNs/metabolismo , Familia de Multigenes , Factor de Transcripción STAT1/metabolismo , Células A549 , Animales , Fibroblastos/inmunología , Fibroblastos/virología , Genes Reporteros , Células HEK293 , Células Hep G2 , Humanos , Interferones/inmunología , Células MCF-7 , Macrófagos/inmunología , Macrófagos/virología , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Transducción de Señal , Replicación Viral
4.
ACS Infect Dis ; 1(3): 130-4, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-27622463

RESUMEN

Many viruses including the hepatitis C virus (HCV) induce changes to the infected host cell metabolism that include the up-regulation of lipogenesis to create a favorable environment for the virus to propagate. The enzyme acetyl-CoA carboxylase (ACC) polymerizes to form a supramolecular complex that catalyzes the rate-limiting step of de novo lipogenesis. The small molecule natural product Soraphen A (SorA) acts as a nanomolar inhibitor of acetyl-CoA carboxylase activity through disruption of the formation of long highly active ACC polymers from less active ACC dimers. We have shown that SorA inhibits HCV replication in HCV cell culture models expressing subgenomic and full-length replicons (IC50 = 5 nM) as well as a cell culture adapted virus. Using coherent anti-Stokes Raman scattering (CARS) microscopy, we have shown that SorA lowers the total cellular lipid volume in hepatoma cells, consistent with a reduction in de novo lipogenesis. Furthermore, SorA treatment was found to depolymerize the ACC complexes into less active dimers. Taken together, our results suggest that SorA treatment reverses HCV-induced lipid accumulation and demonstrate that SorA is a valuable probe to study the roles of ACC polymerization and enzymatic activity in viral pathogenesis.

5.
Hepatology ; 59(1): 98-108, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23897856

RESUMEN

UNLABELLED: MicroRNAs (miRNAs) are small RNAs that posttranscriptionally regulate gene expression. Their aberrant expression is commonly linked with diseased states, including hepatitis C virus (HCV) infection. Herein, we demonstrate that HCV replication induces the expression of miR-27 in cell culture and in vivo HCV infectious models. Overexpression of the HCV proteins core and NS4B independently activates miR-27 expression. Furthermore, we establish that miR-27 overexpression in hepatocytes results in larger and more abundant lipid droplets, as observed by coherent anti-Stokes Raman scattering (CARS) microscopy. This hepatic lipid droplet accumulation coincides with miR-27b's repression of peroxisome proliferator-activated receptor (PPAR)-α and angiopoietin-like protein 3 (ANGPTL3), known regulators of triglyceride homeostasis. We further demonstrate that treatment with a PPAR-α agonist, bezafibrate, is able to reverse the miR-27b-induced lipid accumulation in Huh7 cells. This miR-27b-mediated repression of PPAR-α signaling represents a novel mechanism of HCV-induced hepatic steatosis. This link was further demonstrated in vivo through the correlation between miR-27b expression levels and hepatic lipid accumulation in HCV-infected SCID-beige/Alb-uPa mice. CONCLUSION: Collectively, our results highlight HCV's up-regulation of miR-27 expression as a novel mechanism contributing to the development of hepatic steatosis.


Asunto(s)
Hígado Graso/etiología , Hepacivirus/fisiología , Hepatitis C/complicaciones , MicroARNs/metabolismo , Animales , Bezafibrato , Línea Celular Tumoral , Hepatitis C/metabolismo , Hepatitis C/virología , Homeostasis , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Ratones SCID , PPAR alfa/agonistas , Regulación hacia Arriba
6.
Biochem Biophys Res Commun ; 441(2): 447-52, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24161736

RESUMEN

Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEB's role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB's role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway's role in LD dynamics and the VLDL pathway.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Hepatocitos/metabolismo , Lipoproteínas VLDL/metabolismo , Suero/fisiología , Proteínas Reguladoras de la Apoptosis/genética , Diferenciación Celular , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Hepatocitos/citología , Humanos , Cuerpos de Inclusión , Modelos Biológicos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , ARN Interferente Pequeño/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA