Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38333961

RESUMEN

A properly regulated series of developmental and meiotic events must occur to ensure the successful production of gametes. In Drosophila melanogaster ovaries, these early developmental and meiotic events include the production of the 16-cell cyst, meiotic entry, synaptonemal complex (SC) formation, recombination, and oocyte specification. In order to identify additional genes involved in early oocyte development and meiosis, we reanalyzed 3 published single-cell RNA-seq datasets from Drosophila ovaries, using vasa (germline) together with c(3)G, cona, and corolla (SC) as markers. Our analysis generated a list of 2,743 co-expressed genes. Many known SC-related and early oocyte development genes fell within the top 500 genes on this list, as ranked by the abundance and specificity of each gene's expression across individual analyses. We tested 526 available RNAi lines containing shRNA constructs in germline-compatible vectors representing 331 of the top 500 genes. We assessed targeted ovaries for SC formation and maintenance, oocyte specification, cyst development, and double-strand break dynamics. Six uncharacterized genes exhibited early developmental defects. SC and developmental defects were observed for additional genes not well characterized in the early ovary. Interestingly, in some lines with developmental delays, meiotic events could still be completed once oocyte specificity occurred indicating plasticity in meiotic timing. These data indicate that a transcriptomics approach can be used to identify genes involved in functions in a specific cell type in the Drosophila ovary.


Asunto(s)
Quistes , Proteínas de Drosophila , Animales , Femenino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Interferencia de ARN , Recombinación Genética , Complejo Sinaptonémico , Meiosis/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Oocitos/metabolismo , Perfilación de la Expresión Génica , Quistes/genética , Quistes/metabolismo
2.
Dev Biol ; 482: 17-27, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34822845

RESUMEN

Spermatogenesis is a dynamic process of cellular differentiation that generates the mature spermatozoa required for reproduction. Errors that arise during this process can lead to sterility due to low sperm counts and malformed or immotile sperm. While it is estimated that 1 out of 7 human couples encounter infertility, the underlying cause of male infertility can only be identified in 50% of cases. Here, we describe and examine the genetic requirements for missing minor mitochondria (mmm), sterile affecting ciliogenesis (sac), and testes of unusual size (tous), three previously uncharacterized genes in Drosophila that are predicted to be components of the flagellar axoneme. Using Drosophila, we demonstrate that these genes are essential for male fertility and that loss of mmm, sac, or tous results in complete immotility of the sperm flagellum. Cytological examination uncovered additional roles for sac and tous during cytokinesis and transmission electron microscopy of developing spermatids in mmm, sac, and tous mutant animals revealed defects associated with mitochondria and the accessory microtubules required for the proper elongation of the mitochondria and flagella during ciliogenesis. This study highlights the complex interactions of cilia-related proteins within the cell body and advances our understanding of male infertility by uncovering novel mitochondrial defects during spermatogenesis.


Asunto(s)
Cilios/genética , Drosophila melanogaster/genética , Infertilidad Masculina/genética , Dinámicas Mitocondriales/genética , Motilidad Espermática/genética , Animales , Cilios/metabolismo , Dineínas/genética , Dineínas/metabolismo , Infertilidad Masculina/fisiopatología , Masculino , Microtúbulos/genética , Microtúbulos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Espermátides/patología , Espermatogénesis/genética , Testículo/fisiología
3.
Nat Commun ; 4: 2232, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23903876

RESUMEN

The specificity and extent of RNA editing by ADAR enzymes is determined largely by local primary sequence and secondary structural imperfections in duplex RNA. Here we surgically alter conserved cis elements associated with a cluster of ADAR modification sites within the endogenous Drosophila paralytic transcript. In addition to the local requirement for a central imperfect RNA duplex containing the modified adenosines, we demonstrate that a secondary RNA duplex containing splicing signals strongly modulates RNA editing. A subtle non-coding mutation, extending base pairing of this accessory helix, confers significant phenotypic consequences via effects on splicing. Through mutation/counter-mutation, we also uncover and functionally replace a highly conserved intronic long-range tertiary pseudoknot that is absolutely required for deamination of one particular adenosine in the central duplex. Our results demonstrate that complex RNA tertiary structures, which may be difficult to predict computationally, form in vivo and can regulate RNA-editing events.


Asunto(s)
Conformación de Ácido Nucleico , Edición de ARN/genética , Adenosina Desaminasa/metabolismo , Alelos , Animales , Secuencia de Bases , Secuencia Conservada/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Exones/genética , Femenino , Genotipo , Intrones/genética , Masculino , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Empalme del ARN/genética , Canales de Sodio/metabolismo
4.
Methods Mol Biol ; 718: 41-73, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21370041

RESUMEN

Evidence for the chemical conversion of adenosine-to-inosine (A-to-I) in messenger RNA (mRNA) has been detected in numerous metazoans, especially those "most successful" phyla: Arthropoda, Mollusca, and Chordata. The requisite enzymes for A-to-I editing, ADARs (adenosine deaminases acting on RNA) are highly conserved and are present in every higher metazoan genome sequenced to date. The fruit fly, Drosophila melanogaster, represents an ideal model organism for studying A-to-I editing, both in terms of fundamental biochemistry and in relation to determining adaptive downstream effects on physiology and behavior. The Drosophila genome contains a single structural gene for ADAR (dAdar), yet the fruit fly transcriptome has the widest range of conserved and validated ADAR targets in coding mRNAs of any known organism. In addition, many of the genes targeted by dADAR have been genetically identified as playing a role in nervous system function, providing a rich source of material to investigate the biological relevance of this intriguing process. Here, we discuss how recent advances in the use of ends-out homologous recombination (HR) in Drosophila make possible both the precise control of the editing status for defined adenosine residues and the engineering of flies with globally altered RNA editing of the fly transcriptome. These new approaches promise to significantly improve our understanding of how mRNA modification contributes to insect physiology and ethology.


Asunto(s)
Adenosina/genética , Drosophila melanogaster/genética , Inosina/genética , Edición de ARN , ARN/genética , Recombinación Genética , Animales , Clonación Molecular/métodos , Mutagénesis Sitio-Dirigida/métodos , Reacción en Cadena de la Polimerasa/métodos
5.
Science ; 301(5634): 832-6, 2003 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-12907802

RESUMEN

An unknown number of precursor messenger RNAs undergo genetic recoding by modification of adenosine to inosine, a reaction catalyzed by the adenosine deaminases acting on RNA (ADARs). Discovery of these edited transcripts has always been serendipitous. Using comparative genomics, we identified a phylogenetic signature of RNA editing. We report the identification and experimental verification of 16 previously unknown ADAR target genes in the fruit fly Drosophila and one in humans-more than the sum total previously reported. All of these genes are involved in rapid electrical and chemical neurotransmission, and many of the edited sites recode conserved and functionally important amino acids. These results point to a pivotal role for RNA editing in nervous system function.


Asunto(s)
Adenosina Desaminasa/metabolismo , Drosophila/genética , Genes de Insecto , Canales Iónicos/genética , Edición de ARN , Transmisión Sináptica , Adenosina/metabolismo , Animales , Secuencia de Bases , Drosophila melanogaster/genética , Genómica , Humanos , Inosina/metabolismo , Activación del Canal Iónico , Canales Iónicos/metabolismo , Datos de Secuencia Molecular , Sistema Nervioso/metabolismo , Filogenia , Canales de Potasio/genética , Canales de Potasio/metabolismo , Proteínas de Unión al ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sinapsis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA