Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 18(5): e0279785, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37253048

RESUMEN

Throughout pregnancy, the kidneys undergo significant adaptations in morphology, hemodynamics, and transport to achieve the volume and electrolyte retention required to support a healthy pregnancy. Additionally, during pregnancies complicated by chronic hypertension, altered renal function from normal pregnancy occurs. The goal of this study is to analyze how inhibition of critical transporters affects gestational kidney function as well as how renal function is affected during chronic hypertension in pregnancy. To do this, we developed epithelial cell-based multi-nephron computational models of solute and water transport in the kidneys of a female rat in mid- and late pregnancy. We simulated the effects of key individual pregnancy-induced changes on renal Na+ and K+ transport: proximal tubule length, Na+/H+ exchanger isoform 3 (NHE3) activity, epithelial Na+ channel activity (ENaC), K+ secretory channel expression, and H+-K+-ATPase activity. Additionally, we conducted simulations to predict the effects of inhibition and knockout of the ENaC and H+-K+-ATPase transporters on virgin and pregnant rat kidneys. Our simulation results predicted that the ENaC and H+-K+-ATPase transporters are essential for sufficient Na+ and K+ reabsorption during pregnancy. Last, we developed models to capture changes made during hypertension in female rats and considered what may occur when a rat with chronic hypertension becomes pregnant. Model simulations predicted that in hypertension for a pregnant rat there is a similar shift in Na+ transport from the proximal tubules to the distal tubules as in a virgin rat.


Asunto(s)
Hipertensión , Proteínas de Transporte de Membrana , Ratas , Femenino , Embarazo , Animales , Proteínas de Transporte de Membrana/metabolismo , Hipertensión/metabolismo , Nefronas/metabolismo , Túbulos Renales Proximales/metabolismo , Sodio/metabolismo , Intercambiador 3 de Sodio-Hidrógeno , Adenosina Trifosfatasas/metabolismo , Riñón/metabolismo
2.
PLoS Comput Biol ; 18(12): e1010607, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36538563

RESUMEN

Maintaining normal potassium (K+) concentrations in the extra- and intracellular fluid is critical for cell function. K+ homeostasis is achieved by ensuring proper distribution between extra- and intracellular fluid compartments and by matching K+ excretion with intake. The Na+-K+-ATPase pump facilitates K+ uptake into the skeletal muscle, where most K+ is stored. Na+-K+-ATPase activity is stimulated by insulin and aldosterone. The kidneys regulate long term K+ homeostasis by controlling the amount of K+ excreted through urine. Renal handling of K+ is mediated by a number of regulatory mechanisms, including an aldosterone-mediated feedback control, in which high extracellular K+ concentration stimulates aldosterone secretion, which enhances urine K+ excretion, and a gastrointestinal feedforward control mechanism, in which dietary K+ intake increases K+ excretion. Recently, a muscle-kidney cross talk signal has been hypothesized, where the K+ concentration in skeletal muscle cells directly affects urine K+ excretion without changes in extracellular K+ concentration. To understand how these mechanisms coordinate under different K+ challenges, we have developed a compartmental model of whole-body K+ regulation. The model represents the intra- and extracellular fluid compartments in a human (male) as well as a detailed kidney compartment. We included (i) the gastrointestinal feedforward control mechanism, (ii) the effect of insulin and (iii) aldosterone on Na+-K+-ATPase K+ uptake, and (iv) aldosterone stimulation of renal K+ secretion. We used this model to investigate the impact of regulatory mechanisms on K+ homeostasis. Model predictions showed how the regulatory mechanisms synthesize to ensure that the extra- and intracelluller fluid K+ concentrations remain in normal range in times of K+ loading and fasting. Additionally, we predict that without the hypothesized muscle-kidney cross talk signal, the model was unable to predict a return to normal extracellular K+ concentration after a period of high K+ loading or depletion.


Asunto(s)
Aldosterona , Potasio , Masculino , Humanos , Potasio/metabolismo , Retroalimentación , Riñón/metabolismo , Homeostasis/fisiología , Insulina , Modelos Teóricos , Adenosina Trifosfatasas , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
3.
Am J Physiol Renal Physiol ; 322(2): F121-F137, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894726

RESUMEN

Normal pregnancy is characterized by massive increases in plasma volume and electrolyte retention. Given that the kidneys regulate homeostasis of electrolytes and volume, the organ undergoes major adaptations in morphology, hemodynamics, and transport to achieve the volume and electrolyte retention required in pregnancy. These adaptations are complex, sometimes counterintuitive, and not fully understood. In addition, the demands of the developing fetus and placenta change throughout pregnancy. For example, during late pregnancy, K+ retention and thus enhanced renal K+ reabsorption are required despite many kaliuretic factors. The goal of this study was to unravel how known adaptive changes along the nephrons contribute to the ability of the kidney to meet volume and electrolyte requirements in mid and late pregnancy. We developed computational models of solute and water transport in the superficial nephron of the kidney of a rat in mid and late pregnancy. The midpregnant and late-pregnant rat superficial nephron models predicted that morphological adaptations and increased activity of Na+/H+ exchanger 3 (NHE3) and epithelial Na+ channel are essential for the enhanced Na+ reabsorption observed during pregnancy. Model simulations showed that for sufficient K+ reabsorption, increased activity of H+-K+-ATPase and decreased K+ secretion along the distal segments is required in both mid and late pregnancy. The model results also suggested that certain known sex differences in renal transporter pattern (e.g., the higher NHE3 protein abundance but lower activity in the proximal tubules of virgin female rats compared with male rats) may serve to better prepare females for the increased transport demand in pregnancy.NEW & NOTEWORTHY Normal pregnancy in mammals is generally characterized by massive changes in plasma volume and electrolyte retention. This study provides insights into how the volume and electrolyte requirement in different pregnancy stages are met by coordinated adaptive changes in the kidney. The model results also suggested that certain known sex differences in the renal transporter pattern may serve to better prepare females for the increased transport demand in pregnancy.


Asunto(s)
Células Epiteliales/metabolismo , Tasa de Filtración Glomerular , Modelos Biológicos , Nefronas/metabolismo , Potasio/metabolismo , Reabsorción Renal , Sodio/metabolismo , Equilibrio Hidroelectrolítico , Adaptación Fisiológica , Animales , Acuaporinas/metabolismo , Canales Epiteliales de Sodio/metabolismo , Femenino , Masculino , Nefronas/citología , Volumen Plasmático , Embarazo , Ratas , Factores Sexuales , Intercambiador 3 de Sodio-Hidrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA