Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Microorganisms ; 10(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557704

RESUMEN

This study aimed to investigate the presence of both aerobic and anaerobic bacteria in a water sample collected from a nuclear power plant and establish if the indigenous bacteria or the products of their metabolic activities could initiate the corrosion of two different types of carbon steel (i.e., A570, 1045). The aerobic (heterotrophic, iron-oxidizing) and anaerobic (sulfate-reducing) bacteria were detected in low numbers in the water sample. Three bacterial strains were isolated by the enrichment procedure from this sample. Based on phenotypic and genotypic characteristics, the isolated bacteria were identified as Stenotrophomonas maltophilia IBBCn1 (MT893712), Stenotrophomonas maltophilia IBBCn2 (MT893713), and Bacillus thuringiensis IBBCn3 (MT893714). The bacteria existing in the water sample were able to initiate the corrosion of carbon steel A570 and 1045. The sulfate-reducing bacteria were detected in higher numbers than the heterotrophic bacteria and iron-oxidizing bacteria at the end of the biocorrosion experiments. The carbon steel coupons revealed macroscopic and microscopic changes in the surface characteristics, and these changes could be due to biofilm formation on their surfaces and the accumulation of the corrosion products. The corrosion rate varied from one type of carbon steel to another, depending on the incubation conditions and the chemical composition of the coupons.

2.
Braz. arch. biol. technol ; 59: e16160268, 2016. tab, graf
Artículo en Inglés | LILACS | ID: biblio-951327

RESUMEN

ABSTRACT The aim of this study was to investigate the solvent tolerance mechanisms in Serratia marcescens strain IBBPo15 (KT315653). Serratia marcescens IBBPo15 exhibited remarkable solvent-tolerance, being able to survive in the presence of high concentrations (above 40%) of toxic organic solvents, such as cyclohexane, n-hexane, n-decane, toluene, styrene, and ethylbenzene. S. marcescens IBBPo15 produced extracellular protease and the enzyme production decreased in cells exposed to 5% cyclohexane, n-hexane, toluene, styrene, and ethylbenzene, as compared with the control and n-decane exposed cells. S. marcescens IBBPo15 cells produced carotenoid pigments and alteration of pigments profile (i.e., phytoene, lycopene) were observed in cells exposed to 5% cyclohexane, n-hexane, n-decane, toluene, styrene, and ethylbenzene. The exposure of S. marcescens IBBPo15 cells to 5% cyclohexane, n-hexane, n-decane, toluene, styrene, ethylbenzene induced also changes in the intracellular (e.g., 50 kDa protein) and extracellular (e.g., 39, 41, 43, 53, 110 kDa proteins) proteins profile. Significant RAPD, ARDRA, rep-PCR and PCR pattern modifications were not observed in DNA extracted from S. marcescens IBBPo15 cells exposed to 5% cyclohexane, n-hexane, n-decane, toluene, styrene, and ethylbenzene. Though only HAE1 and acrAB genes were detected in the genome of S. marcescens IBBPo15 cells, the unspecific amplification of other fragments being observed also when the primers for ompF and recA genes were used.

3.
Braz. j. microbiol ; 46(4): 1009-1018, Oct.-Dec. 2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-769674

RESUMEN

Abstract Recently, there has been a lot of interest in the utilization of rhodococci in the bioremediation of petroleum contaminated environments. This study investigates the response of Rhodococcus erythropolis IBBPo1 cells to 1% organic solvents (alkanes, aromatics). A combination of microbiology, biochemical, and molecular approaches were used to examine cell adaptation mechanisms likely to be pursued by this strain after 1% organic solvent exposure. R. erythropolis IBBPo1 was found to utilize 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene) as the sole carbon source. Modifications in cell viability, cell morphology, membrane permeability, lipid profile, carotenoid pigments profile and 16S rRNA gene were revealed in R. erythropolis IBBPo1 cells grown 1 and 24 h on minimal medium in the presence of 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene). Due to its environmental origin and its metabolic potential, R. erythropolis IBBPo1 is an excellent candidate for the bioremediation of soils contaminated with crude oils and other toxic compounds. Moreover, the carotenoid pigments produced by this nonpathogenic Gram-positive bacterium have a variety of other potential applications.


Asunto(s)
Adaptación Biológica/efectos de los fármacos , Adaptación Biológica/genética , Adaptación Biológica/fisiología , Adaptación Biológica/toxicidad , Compuestos Orgánicos/efectos de los fármacos , Compuestos Orgánicos/genética , Compuestos Orgánicos/fisiología , Compuestos Orgánicos/toxicidad , /efectos de los fármacos , /genética , /fisiología , /toxicidad , Rhodococcus/efectos de los fármacos , Rhodococcus/genética , Rhodococcus/fisiología , Rhodococcus/toxicidad , Solventes/efectos de los fármacos , Solventes/genética , Solventes/fisiología , Solventes/toxicidad
4.
World J Microbiol Biotechnol ; 30(9): 2459-69, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24849010

RESUMEN

Lactic acid bacteria (LAB) isolated from different sources (dairy products, fruits, fresh and fermented vegetables, fermented cereals) were screened for antimicrobial activity against other bacteria, including potential pathogens and food spoiling bacteria. Six strains have been shown to produce bacteriocins: Lactococcus lactis 19.3, Lactobacillus plantarum 26.1, Enterococcus durans 41.2, isolated from dairy products and Lactobacillus amylolyticus P40 and P50, and Lactobacillus oris P49, isolated from bors. Among the six bacteriocins, there were both heat stable, low molecular mass polypeptides, with a broad inhibitory spectrum, probably belonging to class II bacteriocins, and heat labile, high molecular mass proteins, with a very narrow inhibitory spectrum, most probably belonging to class III bacteriocins. A synergistic effect of some bacteriocins mixtures was observed. We can conclude that fermented foods are still important sources of new functional LAB. Among the six characterized bacteriocins, there might be some novel compounds with interesting features. Moreover, the bacteriocin-producing strains isolated in our study may find applications as protective cultures.


Asunto(s)
Bacteriocinas/aislamiento & purificación , Bacteriocinas/metabolismo , Enterococcus/aislamiento & purificación , Enterococcus/metabolismo , Microbiología de Alimentos , Lactococcus/aislamiento & purificación , Lactococcus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Bacteriocinas/química , Enterococcus/química , Peso Molecular , Estabilidad Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA