Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Physiol ; 11: 568087, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33041864

RESUMEN

Platelets are specialized anucleate cells that play a major role in hemostasis following vessel injury. More recently, platelets have also been implicated in innate immunity and inflammation by directly interacting with immune cells and releasing proinflammatory signals. It is likely therefore that in certain pathologies, such as chronic parasitic infections and myeloid malignancies, platelets can act as mediators for hemostatic and proinflammatory responses. Fortunately, murine platelet function ex vivo is highly analogous to human, providing a robust model for functional comparison. However, traditional methods of studying platelet phenotype, function and activation status often rely on using large numbers of whole isolated platelet populations, which severely limits the number and type of assays that can be performed with mouse blood. Here, using cutting edge 3D quantitative phase imaging, holotomography, that uses optical diffraction tomography (ODT), we were able to identify and quantify differences in single unlabeled, live platelets with minimal experimental interference. We analyzed platelets directly isolated from whole blood of mice with either a JAK2V617F-positive myeloproliferative neoplasm (MPN) or Leishmania donovani infection. Image analysis of the platelets indicates previously uncharacterized differences in platelet morphology, including altered cell volume and sphericity, as well as changes in biophysical parameters such as refractive index (RI) and dry mass. Together, these data indicate that, by using holotomography, we were able to identify clear disparities in activation status and potential functional ability in disease states compared to control at the level of single platelets.

2.
Science ; 367(6478): 643-652, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32029621

RESUMEN

Homodimeric class I cytokine receptors are assumed to exist as preformed dimers that are activated by ligand-induced conformational changes. We quantified the dimerization of three prototypic class I cytokine receptors in the plasma membrane of living cells by single-molecule fluorescence microscopy. Spatial and spatiotemporal correlation of individual receptor subunits showed ligand-induced dimerization and revealed that the associated Janus kinase 2 (JAK2) dimerizes through its pseudokinase domain. Oncogenic receptor and hyperactive JAK2 mutants promoted ligand-independent dimerization, highlighting the formation of receptor dimers as the switch responsible for signal activation. Atomistic modeling and molecular dynamics simulations based on a detailed energetic analysis of the interactions involved in dimerization yielded a mechanistic blueprint for homodimeric class I cytokine receptor activation and its dysregulation by individual mutations.


Asunto(s)
Carcinogénesis/genética , Membrana Celular/química , Janus Quinasa 2/química , Janus Quinasa 2/genética , Multimerización de Proteína , Receptores de Eritropoyetina/química , Receptores de Somatotropina/química , Receptores de Trombopoyetina/química , Sustitución de Aminoácidos/genética , Células HeLa , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Ligandos , Microscopía Fluorescente , Modelos Moleculares , Mutación , Nitrilos , Fenilalanina/genética , Pirazoles/farmacología , Pirimidinas , Transducción de Señal , Imagen Individual de Molécula , Valina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA