Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Am J Pathol ; 164(6): 1935-47, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15161630

RESUMEN

Diminished production of vascular endothelial growth factor (VEGF) and decreased angiogenesis are thought to contribute to impaired tissue repair in diabetic patients. We examined whether recombinant human VEGF(165) protein would reverse the impaired wound healing phenotype in genetically diabetic mice. Paired full-thickness skin wounds on the dorsum of db/db mice received 20 microg of VEGF every other day for five doses to one wound and vehicle (phosphate-buffered saline) to the other. We demonstrate significantly accelerated repair in VEGF-treated wounds with an average time to resurfacing of 12 days versus 25 days in untreated mice. VEGF-treated wounds were characterized by an early leaky, malformed vasculature followed by abundant granulation tissue deposition. The VEGF-treated wounds demonstrated increased epithelialization, increased matrix deposition, and enhanced cellular proliferation, as assessed by uptake of 5-bromodeoxyuridine. Analysis of gene expression by real-time reverse transcriptase-polymerase chain reaction demonstrates a significant up-regulation of platelet-derived growth factor-B and fibroblast growth factor-2 in VEGF-treated wounds, which corresponds with the increased granulation tissue in these wounds. These experiments also demonstrated an increase in the rate of repair of the contralateral phosphate-buffered saline-treated wound when compared to wounds in diabetic mice never exposed to VEGF (18 days versus 25 days), suggesting that topical VEGF had a systemic effect. We observed increased numbers of circulating VEGFR2(+)/CD11b(-) cells in the VEGF-treated mice by fluorescence-activated cell sorting analysis, which likely represent an endothelial precursor population. In diabetic mice with bone marrow replaced by that of tie2/lacZ mice we demonstrate that the local recruitment of bone marrow-derived endothelial lineage lacZ+ cells was augmented by topical VEGF. We conclude that topical VEGF is able to improve wound healing by locally up-regulating growth factors important for tissue repair and by systemically mobilizing bone marrow-derived cells, including a population that contributes to blood vessel formation, and recruiting these cells to the local wound environment where they are able to accelerate repair. Thus, VEGF therapy may be useful in the treatment of diabetic complications characterized by impaired neovascularization.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Proteínas Recombinantes/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Femenino , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Sustancias de Crecimiento/genética , Movilización de Célula Madre Hematopoyética , Humanos , Ratones , Ratones Mutantes , Ratones Transgénicos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/efectos de los fármacos , Piel/patología , beta-Galactosidasa/genética
2.
Physiol Genomics ; 11(3): 263-72, 2002 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-12399448

RESUMEN

DNA microarrays were used to measure the time course of gene expression during skeletal muscle damage and regeneration in mice following femoral artery ligation (FAL). We found 1,289 known sequences were differentially expressed between the FAL and control groups. Gene expression peaked on day 3, and the functional cluster "inflammation" contained the greatest number of genes. Muscle function was depressed for 3 days postligation, but returned to normal by day 7. Decreased muscle function was accompanied by reduced expression of genes involved in mitochondrial energy production, muscle contraction, and calcium handling. The induction of MyoD on day 1 denoted the beginning of muscle regeneration and was followed by the reemergence of the embryonic forms of muscle contractile proteins, which peaked at day 7. Transcriptional analysis indicated that the ischemic skeletal muscle may transition through a functional adaptation stage with recovery of contractile force prior to full regeneration. Several members of the insulin-like growth factor axis were coordinately induced in a time frame consistent with their playing a role in the regenerative process.


Asunto(s)
Isquemia/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Regeneración , Enfermedad Aguda , Animales , Citocinas/biosíntesis , Citocinas/genética , Arteria Femoral/cirugía , Perfilación de la Expresión Génica , Isquemia/metabolismo , Isquemia/patología , Cinética , Ligadura , Extremidad Inferior , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular , Músculo Esquelético/patología , Miosinas/biosíntesis , Miosinas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/biosíntesis , Receptores de Citocinas/biosíntesis , Receptores de Citocinas/genética , Somatomedinas/biosíntesis , Somatomedinas/genética , Transcripción Genética
3.
Endocrinology ; 143(9): 3681-90, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12193584

RESUMEN

Fish stanniocalcin (STC) inhibits uptake of calcium and stimulates phosphate reabsorption. To determine the role of the highly homologous mammalian protein, STC-1, we created and characterized transgenic mice that express STC-1 under control of a muscle-specific promoter. STC-1 transgenic mice were smaller than wild-type littermates and had normal growth plate cartilage morphology but increased cartilage matrix synthesis. In STC-1 mice, the rate of bone formation, but not bone mineralization, was decreased. Increased cortical bone thickness and changes in trabeculae number, density, and thickness in STC-1 mice indicated a concomitant suppression of osteoclast activity, which was supported by microcomputed tomography analyses and histochemistry. Skeletal muscles were disproportionately small and showed altered function and response to injury in STC-1 mice. Electron microscopy indicated that muscle mitochondria were dramatically enlarged in STC-1 mice. These changes in STC-1 mice could not be explained by deficits in blood vessel formation, as vascularity in organs and skeletal tissues was increased as was induction of vascularity in response to femoral artery ligation. Our results indicate that STC-1 can affect calcium homeostasis, bone and muscle mass and structure, and angiogenesis through effects on osteoblasts, osteoclasts, myoblasts/myocytes, and endothelial cells.


Asunto(s)
Huesos/anatomía & histología , Huesos/fisiología , Glicoproteínas/fisiología , Hormonas/fisiología , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiología , Animales , Composición Corporal , Constitución Corporal , Densidad Ósea , Desarrollo Óseo , Matriz Ósea/metabolismo , Calcificación Fisiológica , Calcio/sangre , Cartílago/metabolismo , Femenino , Expresión Génica , Glicoproteínas/genética , Crecimiento/genética , Placa de Crecimiento/anatomía & histología , Hormonas/genética , Masculino , Ratones , Ratones Transgénicos , Microscopía Electrónica , Neovascularización Fisiológica , Osteoclastos/fisiología , Cráneo/diagnóstico por imagen , Tomografía Computarizada por Rayos X
4.
Proc Natl Acad Sci U S A ; 99(15): 9656-61, 2002 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-12118119

RESUMEN

Several growth factors are expressed in distinct temporal and spatial patterns during fracture repair. Of these, vascular endothelial growth factor, VEGF, is of particular interest because of its ability to induce neovascularization (angiogenesis). To determine whether VEGF is required for bone repair, we inhibited VEGF activity during secondary bone healing via a cartilage intermediate (endochondral ossification) and during direct bone repair (intramembranous ossification) in a novel mouse model. Treatment of mice with a soluble, neutralizing VEGF receptor decreased angiogenesis, bone formation, and callus mineralization in femoral fractures. Inhibition of VEGF also dramatically inhibited healing of a tibial cortical bone defect, consistent with our discovery of a direct autocrine role for VEGF in osteoblast differentiation. In separate experiments, exogenous VEGF enhanced blood vessel formation, ossification, and new bone (callus) maturation in mouse femur fractures, and promoted bony bridging of a rabbit radius segmental gap defect. Our results at specific time points during the course of healing underscore the role of VEGF in endochondral vs. intramembranous ossification, as well as skeletal development vs. bone repair. The responses to exogenous VEGF observed in two distinct model systems and species indicate that a slow-release formulation of VEGF, applied locally at the site of bone damage, may prove to be an effective therapy to promote human bone repair.


Asunto(s)
Huesos/lesiones , Huesos/metabolismo , Factores de Crecimiento Endotelial/farmacología , Fracturas del Fémur/fisiopatología , Curación de Fractura/efectos de los fármacos , Linfocinas/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Osteoblastos/fisiología , Animales , Huesos/irrigación sanguínea , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoblastos/efectos de los fármacos , Conejos , Radio (Anatomía)/lesiones , Tibia/diagnóstico por imagen , Tibia/lesiones , Tomografía Computarizada por Rayos X , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA