Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros











Intervalo de año de publicación
1.
Curr Opin Struct Biol ; 87: 102845, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38805950

RESUMEN

Microtubule-targeting agents (MTAs) have demonstrated remarkable efficacy as antitumor, antifungal, antiparasitic, and herbicidal agents, finding applications in the clinical, veterinary, and agrochemical industry. Recent advances in tubulin and microtubule structural biology have provided powerful tools that pave the way for the rational design of innovative small-molecule MTAs for future basic and applied life science applications. In this mini-review, we present the current status of the tubulin and microtubule structural biology field, the recent impact it had on the discovery and rational design of MTAs, and exciting avenues for future MTA research.

2.
J Biol Chem ; 300(6): 107363, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735475

RESUMEN

Cryptophycins are microtubule-targeting agents (MTAs) that belong to the most potent antimitotic compounds known to date; however, their exact molecular mechanism of action remains unclear. Here, we present the 2.2 Å resolution X-ray crystal structure of a potent cryptophycin derivative bound to the αß-tubulin heterodimer. The structure addresses conformational issues present in a previous 3.3 Å resolution cryo-electron microscopy structure of cryptophycin-52 bound to the maytansine site of ß-tubulin. It further provides atomic details on interactions of cryptophycins, which had not been described previously, including ones that are in line with structure-activity relationship studies. Interestingly, we discovered a second cryptophycin-binding site that involves the T5-loop of ß-tubulin, a critical secondary structure element involved in the exchange of the guanosine nucleotide and in the formation of longitudinal tubulin contacts in microtubules. Cryptophycins are the first natural ligands found to bind to this new "ßT5-loop site" that bridges the maytansine and vinca sites. Our results offer unique avenues to rationally design novel MTAs with the capacity to modulate T5-loop dynamics and to simultaneously engage multiple ß-tubulin binding sites.

3.
Chem Sci ; 15(11): 3879-3892, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38487227

RESUMEN

Accelerated SuFEx Click Chemistry (ASCC) is a powerful method for coupling aryl and alkyl alcohols with SuFEx-compatible functional groups. With its hallmark favorable kinetics and exceptional product yields, ASCC streamlines the synthetic workflow, simplifies the purification process, and is ideally suited for discovering functional molecules. We showcase the versatility and practicality of the ASCC reaction as a tool for the late-stage derivatization of bioactive molecules and in the array synthesis of sulfonate-linked, high-potency, microtubule targeting agents (MTAs) that exhibit nanomolar anticancer activity against multidrug-resistant cancer cell lines. These findings underscore ASCC's promise as a robust platform for drug discovery.

4.
Nat Commun ; 14(1): 903, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36807348

RESUMEN

The binding and release of ligands from their protein targets is central to fundamental biological processes as well as to drug discovery. Photopharmacology introduces chemical triggers that allow the changing of ligand affinities and thus biological activity by light. Insight into the molecular mechanisms of photopharmacology is largely missing because the relevant transitions during the light-triggered reaction cannot be resolved by conventional structural biology. Using time-resolved serial crystallography at a synchrotron and X-ray free-electron laser, we capture the release of the anti-cancer compound azo-combretastatin A4 and the resulting conformational changes in tubulin. Nine structural snapshots from 1 ns to 100 ms complemented by simulations show how cis-to-trans isomerization of the azobenzene bond leads to a switch in ligand affinity, opening of an exit channel, and collapse of the binding pocket upon ligand release. The resulting global backbone rearrangements are related to the action mechanism of microtubule-destabilizing drugs.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Cristalografía , Ligandos , Microtúbulos/metabolismo , Cristalografía por Rayos X
5.
Structure ; 31(1): 88-99.e5, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36462501

RESUMEN

Taxanes are microtubule-stabilizing agents used in the treatment of many solid tumors, but they often involve side effects affecting the peripheral nervous system. It has been proposed that this could be related to structural modifications on the filament upon drug binding. Alternatively, laulimalide and peloruside bind to a different site also inducing stabilization, but they have not been exploited in clinics. Here, we use a combination of the parental natural compounds and derived analogs to unravel the stabilization mechanism through this site. These drugs settle lateral interactions without engaging the M loop, which is part of the key and lock involved in the inter-protofilament contacts. Importantly, these drugs can modulate the angle between protofilaments, producing microtubules of different diameters. Among the compounds studied, we have found some showing low cytotoxicity and able to induce stabilization without compromising microtubule native structure. This opens the window of new applications for microtubule-stabilizing agents beyond cancer treatment.


Asunto(s)
Lactonas , Tubulina (Proteína) , Lactonas/farmacología , Tubulina (Proteína)/metabolismo , Excipientes/análisis , Excipientes/metabolismo , Sitios de Unión , Microtúbulos/metabolismo
6.
Eur J Med Chem ; 243: 114744, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36242921

RESUMEN

Lymphomas are among the ten most common cancers, and, although progress has been achieved in increasing survival, there is still an unmet need for more effective therapeutic approaches, including better options for patients with refractory tumors that initially respond but then relapse. The lack of effective alternative treatment options highlights the need to develop new therapeutic strategies capable of improving survival prospects for lymphoma patients. Herein, we describe the identification and exploration of the SAR of a series of [1,2]oxazolo[5,4-e]isoindoles as potent small molecules that bind to the colchicine site of tubulin and that have promise for the treatment of refractory lymphomas. Exploration of the chemical space of this class of compounds at the pyrrole moiety and at the [1,2]oxazole ring highlighted two compounds bearing a 3,5-dimethoxybenzyl and a 3,4,5-trimethoxybenzyl group as potent candidates and showed that structural modifications at the isoxazole moiety are generally not favorable for activity. The two best candidates showed efficacy against different lymphoma histotypes and displayed 88 and 80% inhibition of colchicine binding fitting well into the colchicine pocket, as demonstrated by X-ray crystallography T2R-TTL-complexes, docking and thermodynamic analysis of the tubulin-colchicine complex structure. These results were confirmed by transcriptome data, thus indicating [1,2]oxazolo[5,4-e]isoindoles are promising candidates as antitubulin agents for the treatment of refractory lymphomas.


Asunto(s)
Antineoplásicos , Linfoma , Neoplasias , Humanos , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Colchicina/metabolismo , Isoindoles , Linfoma/tratamiento farmacológico , Sitios de Unión , Antineoplásicos/química , Línea Celular Tumoral , Relación Estructura-Actividad
7.
Eur J Med Chem ; 241: 114614, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-35939994

RESUMEN

Microtubules (MTs) are dynamic filaments of the cytoskeleton, which are formed by the polymerization of their building block tubulin. Perturbation of MT dynamics by MT-targeting agents (MTAs) leads to cell cycle arrest or cell death, a strategy that is pursued in chemotherapy. We recently performed a combined computational and crystallographic fragment screening approach and identified several tubulin-binding fragments. Here, we sought to capitalize on this study with the aim to demonstrate that low affinity tubulin-binding fragments can indeed be used as valuable starting points for the development of active, lead-like antitubulin small molecules. To this end, we report on a new, rationally designed series of 2-aminobenzimidazole derivatives that destabilize MTs by binding tubulin at the colchicine-binding site (CBS). We applied a fragment growing strategy by combining X-ray crystallography and computer-aided drug design. Preliminary structure-activity-relationship studies afforded compound 18 that inhibits HeLa cell viability with a submicromolar activity (IC50 of 0.9 µM). X-ray crystallography confirmed the compound pose in the CBS, while immunostaining experiments suggested a molecular mechanism of action alike classical CBS ligands with antimitotic and antitumor activity associated with MTs destabilization. This promising outcome underpins that our previously performed combined computational and crystallographic fragment screening approach provides promising starting points for developing new MTAs binding to the CBS of tubulin and, eventually, to further tubulin pockets.


Asunto(s)
Antineoplásicos , Colchicina , Antineoplásicos/química , Sitios de Unión , Proliferación Celular , Colchicina/metabolismo , Células HeLa , Humanos , Microtúbulos/metabolismo , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química
8.
EMBO Mol Med ; 13(11): e13818, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34661376

RESUMEN

Infectious diseases caused by apicomplexan parasites remain a global public health threat. The presence of multiple ligand-binding sites in tubulin makes this protein an attractive target for anti-parasite drug discovery. However, despite remarkable successes as anti-cancer agents, the rational development of protozoan parasite-specific tubulin drugs has been hindered by a lack of structural and biochemical information on protozoan tubulins. Here, we present atomic structures for a protozoan tubulin and microtubule and delineate the architectures of apicomplexan tubulin drug-binding sites. Based on this information, we rationally designed the parasite-specific tubulin inhibitor parabulin and show that it inhibits growth of parasites while displaying no effects on human cells. Our work presents for the first time the rational design of a species-specific tubulin drug providing a framework to exploit structural differences between human and protozoa tubulin variants enabling the development of much-needed, novel parasite inhibitors.


Asunto(s)
Antiparasitarios , Parásitos , Animales , Antiparasitarios/farmacología , Sitios de Unión , Proliferación Celular , Humanos , Microtúbulos/metabolismo , Parásitos/metabolismo , Tubulina (Proteína) , Moduladores de Tubulina/farmacología
9.
Mol Cancer Ther ; 20(10): 1846-1857, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34315764

RESUMEN

PTC596 is an investigational small-molecule tubulin-binding agent. Unlike other tubulin-binding agents, PTC596 is orally bioavailable and is not a P-glycoprotein substrate. So as to characterize PTC596 to position the molecule for optimal clinical development, the interactions of PTC596 with tubulin using crystallography, its spectrum of preclinical in vitro anticancer activity, and its pharmacokinetic-pharmacodynamic relationship were investigated for efficacy in multiple preclinical mouse models of leiomyosarcomas and glioblastoma. Using X-ray crystallography, it was determined that PTC596 binds to the colchicine site of tubulin with unique key interactions. PTC596 exhibited broad-spectrum anticancer activity. PTC596 showed efficacy as monotherapy and additive or synergistic efficacy in combinations in mouse models of leiomyosarcomas and glioblastoma. PTC596 demonstrated efficacy in an orthotopic model of glioblastoma under conditions where temozolomide was inactive. In a first-in-human phase I clinical trial in patients with cancer, PTC596 monotherapy drug exposures were compared with those predicted to be efficacious based on mouse models. PTC596 is currently being tested in combination with dacarbazine in a clinical trial in adults with leiomyosarcoma and in combination with radiation in a clinical trial in children with diffuse intrinsic pontine glioma.


Asunto(s)
Bencimidazoles/farmacología , Glioblastoma/tratamiento farmacológico , Leiomiosarcoma/tratamiento farmacológico , Pirazinas/farmacología , Moduladores de Tubulina/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Bencimidazoles/farmacocinética , Proliferación Celular , Femenino , Glioblastoma/patología , Humanos , Leiomiosarcoma/patología , Masculino , Dosis Máxima Tolerada , Ratones , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Pirazinas/farmacocinética , Distribución Tisular , Moduladores de Tubulina/farmacocinética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
ChemMedChem ; 16(18): 2882-2894, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34159741

RESUMEN

Since the revelation of noscapine's weak anti-mitotic activity, extensive research has been conducted over the past two decades, with the goal of discovering noscapine derivatives with improved potency. To date, noscapine has been explored at the 1, 7, 6', and 9'-positions, though the 1,3-benzodioxole motif in the noscapine scaffold that remains unexplored. The present investigation describes the design, synthesis and pharmacological evaluation of noscapine analogues consisting of modifications to the 1,3-benzodioxole moiety. This includes expansion of the dioxolane ring and inclusion of metabolically robust deuterium and fluorine atoms. Favourable structural modifications were subsequently incorporated into multi-functionalised noscapine derivatives that also possessed modifications previously shown to promote anti-proliferative activity in the 1-, 6'- and 9'-positions. Our research efforts afforded the deuterated noscapine derivative 14 e and the dioxino-containing analogue 20 as potent cytotoxic agents with EC50 values of 1.50 and 0.73 µM, respectively, against breast cancer (MCF-7) cells. Compound 20 also exhibited EC50 values of <2 µM against melanoma, non-small cell lung carcinoma, and cancers of the brain, kidney and breast in an NCI screen. Furthermore, compounds 14 e and 20 inhibit tubulin polymerisation and are not vulnerable to the overexpression of resistance conferring P-gp efflux pumps in drug-resistant breast cancer cells (NCIADR/RES ). We also conducted X-ray crystallography studies that yielded the high-resolution structure of 14 e bound to tubulin. Our structural analysis revealed the key interactions between this noscapinoid and tubulin and will assist with the future design of noscapine derivatives with improved properties.


Asunto(s)
Antineoplásicos/farmacología , Dioxoles/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Dioxoles/síntesis química , Dioxoles/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Polimerizacion/efectos de los fármacos , Relación Estructura-Actividad , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Células Tumorales Cultivadas
11.
Mol Cell ; 79(1): 191-198.e3, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32619469

RESUMEN

We recently used CRISPRi/a-based chemical-genetic screens and cell biological, biochemical, and structural assays to determine that rigosertib, an anti-cancer agent in phase III clinical trials, kills cancer cells by destabilizing microtubules. Reddy and co-workers (Baker et al., 2020, this issue of Molecular Cell) suggest that a contaminating degradation product in commercial formulations of rigosertib is responsible for the microtubule-destabilizing activity. Here, we demonstrate that cells treated with pharmaceutical-grade rigosertib (>99.9% purity) or commercially obtained rigosertib have qualitatively indistinguishable phenotypes across multiple assays. The two formulations have indistinguishable chemical-genetic interactions with genes that modulate microtubule stability, both destabilize microtubules in cells and in vitro, and expression of a rationally designed tubulin mutant with a mutation in the rigosertib binding site (L240F TUBB) allows cells to proliferate in the presence of either formulation. Importantly, the specificity of the L240F TUBB mutant for microtubule-destabilizing agents has been confirmed independently. Thus, rigosertib kills cancer cells by destabilizing microtubules, in agreement with our original findings.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular , Glicina/análogos & derivados , Microtúbulos/efectos de los fármacos , Neoplasias/patología , Preparaciones Farmacéuticas/metabolismo , Sulfonas/farmacología , Tubulina (Proteína)/metabolismo , Células Cultivadas , Cristalografía por Rayos X , Contaminación de Medicamentos , Glicina/farmacología , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Preparaciones Farmacéuticas/química , Conformación Proteica , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
12.
J Med Chem ; 63(15): 8495-8501, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32657585

RESUMEN

Noscapine is a natural alkaloid that is used as an antitussive medicine. However, it also acts as a weak anticancer agent in certain in vivo models through a mechanism that is largely unknown. Here, we performed structural studies and show that the cytotoxic agent 7A-O-demethoxy-amino-noscapine (7A-aminonoscapine) binds to the colchicine site of tubulin. We suggest that the 7A-methoxy group of noscapine prevents binding to tubulin due to a steric clash of the compound with the T5-loop of α-tubulin. We further propose that the anticancer activity of noscapine arises from a bioactive metabolite that binds to the colchicine site of tubulin to induce mitotic arrest through a microtubule cytoskeleton-based mechanism.


Asunto(s)
Antineoplásicos/farmacología , Noscapina/análogos & derivados , Tubulina (Proteína)/metabolismo , Animales , Antineoplásicos/química , Sitios de Unión/efectos de los fármacos , Colchicina/metabolismo , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Noscapina/química , Noscapina/farmacología , Unión Proteica/efectos de los fármacos , Tubulina (Proteína)/química , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología
13.
Mol Pharmacol ; 98(2): 156-167, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32591477

RESUMEN

The natural product (+)-discodermolide (DDM) is a microtubule stabilizing agent and potent inducer of senescence. We refined the structure of DDM and evaluated the activity of novel congeners in triple negative breast and ovarian cancers, malignancies that typically succumb to taxane resistance. Previous structure-activity analyses identified the lactone and diene as moieties conferring anticancer activity, thus identifying priorities for the structural refinement studies described herein. Congeners possessing the monodiene with a simplified lactone had superior anticancer efficacy relative to taxol, particularly in resistant models. Specifically, one of these congeners, B2, demonstrated 1) improved pharmacologic properties, specifically increased maximum response achievable and area under the curve, and decreased EC50; 2) a uniform dose-response profile across genetically heterogeneous cancer cell lines relative to taxol or DDM; 3) reduced propensity for senescence induction relative to DDM; 4) superior long-term activity in cancer cells versus taxol or DDM; and 5) attenuation of metastatic characteristics in treated cancer cells. To contrast the binding of B2 versus DDM in tubulin, X-ray crystallography studies revealed a shift in the position of the lactone ring associated with removal of the C2-methyl and C3-hydroxyl. Thus, B2 may be more adaptable to changes in the taxane site relative to DDM that could account for its favorable properties. In conclusion, we have identified a DDM congener with broad range anticancer efficacy that also has decreased risk of inducing chemotherapy-mediated senescence. SIGNIFICANCE STATEMENT: Here, we describe the anticancer activity of novel congeners of the tubulin-polymerizing molecule (+)-discodermolide. A lead molecule is identified that exhibits an improved dose-response profile in taxane-sensitive and taxane-resistant cancer cell models, diminished risk of chemotherapy-mediated senescence, and suppression of tumor cell invasion endpoints. X-ray crystallography studies identify subtle changes in the pose of binding to ß-tubulin that could account for the improved anticancer activity. These findings support continued preclinical development of discodermolide, particularly in the chemorefractory setting.


Asunto(s)
Alcanos/química , Carbamatos/química , Lactonas/síntesis química , Neoplasias Ováricas/metabolismo , Pironas/química , Neoplasias de la Mama Triple Negativas/metabolismo , Moduladores de Tubulina/síntesis química , Células A549 , Área Bajo la Curva , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Lactonas/química , Lactonas/farmacología , Estructura Molecular , Neoplasias Ováricas/tratamiento farmacológico , Taxoides/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología
14.
Elife ; 92020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32151315

RESUMEN

Microtubules (MTs) are hollow cylinders made of tubulin, a GTPase responsible for essential functions during cell growth and division, and thus, key target for anti-tumor drugs. In MTs, GTP hydrolysis triggers structural changes in the lattice, which are responsible for interaction with regulatory factors. The stabilizing GTP-cap is a hallmark of MTs and the mechanism of the chemical-structural link between the GTP hydrolysis site and the MT lattice is a matter of debate. We have analyzed the structure of tubulin and MTs assembled in the presence of fluoride salts that mimic the GTP-bound and GDP•Pi transition states. Our results challenge current models because tubulin does not change axial length upon GTP hydrolysis. Moreover, analysis of the structure of MTs assembled in the presence of several nucleotide analogues and of taxol allows us to propose that previously described lattice expansion could be a post-hydrolysis stage involved in Pi release.


Asunto(s)
Microtúbulos/química , Modelos Moleculares , Conformación Molecular , Microscopía por Crioelectrón , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Enlace de Hidrógeno , Microtúbulos/metabolismo , Relación Estructura-Actividad , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
15.
Nat Mater ; 19(3): 355-365, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31819210

RESUMEN

Microtubules are polymers of tubulin dimers, and conformational transitions in the microtubule lattice drive microtubule dynamic instability and affect various aspects of microtubule function. The exact nature of these transitions and their modulation by anticancer drugs such as Taxol and epothilone, which can stabilize microtubules but also perturb their growth, are poorly understood. Here, we directly visualize the action of fluorescent Taxol and epothilone derivatives and show that microtubules can transition to a state that triggers cooperative drug binding to form regions with altered lattice conformation. Such regions emerge at growing microtubule ends that are in a pre-catastrophe state, and inhibit microtubule growth and shortening. Electron microscopy and in vitro dynamics data indicate that taxane accumulation zones represent incomplete tubes that can persist, incorporate tubulin dimers and repeatedly induce microtubule rescues. Thus, taxanes modulate the material properties of microtubules by converting destabilized growing microtubule ends into regions resistant to depolymerization.


Asunto(s)
Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Taxoides/farmacología , Células HeLa , Humanos , Cinética , Tubulina (Proteína)/metabolismo
16.
Cell Rep ; 28(13): 3367-3380.e8, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31553907

RESUMEN

Dendritic cell (DC) activation is a critical step for anti-tumor T cell responses. Certain chemotherapeutics can influence DC function. Here we demonstrate that chemotherapy capable of microtubule destabilization has direct effects on DC function; namely, it induces potent DC maturation and elicits anti-tumor immunity. Guanine nucleotide exchange factor-H1 (GEF-H1) is specifically released upon microtubule destabilization and is required for DC activation. In response to chemotherapy, GEF-H1 drives a distinct cell signaling program in DCs dominated by the c-Jun N-terminal kinase (JNK) pathway and AP-1/ATF transcriptional response for control of innate and adaptive immune responses. Microtubule destabilization, and subsequent GEF-H1 signaling, enhances cross-presentation of tumor antigens to CD8 T cells. In absence of GEF-H1, anti-tumor immunity is hampered. In cancer patients, high expression of the GEF-H1 immune gene signature is associated with prolonged survival. Our study identifies an alternate intracellular axis in DCs induced upon microtubule destabilization in which GEF-H1 promotes protective anti-tumor immunity.


Asunto(s)
Células Dendríticas/metabolismo , Microtúbulos/metabolismo , Neoplasias/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal/inmunología , Diferenciación Celular , Humanos
17.
Cell Syst ; 9(1): 74-92.e8, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31302152

RESUMEN

There is an unmet need for new antimitotic drug combinations that target cancer-specific vulnerabilities. Based on our finding of elevated biomolecule oxidation in mitotically arrested cancer cells, we combined Plk1 inhibitors with TH588, an MTH1 inhibitor that prevents detoxification of oxidized nucleotide triphosphates. This combination showed robust synergistic killing of cancer, but not normal, cells that, surprisingly, was MTH1-independent. To dissect the underlying synergistic mechanism, we developed VISAGE, a strategy integrating experimental synergy quantification with computational-pathway-based gene expression analysis. VISAGE predicted, and we experimentally confirmed, that this synergistic combination treatment targeted the mitotic spindle. Specifically, TH588 binding to ß-tubulin impaired microtubule assembly, which when combined with Plk1 blockade, synergistically disrupted mitotic chromosome positioning to the spindle midzone. These findings identify a cancer-specific mitotic vulnerability that is targetable using Plk1 inhibitors with microtubule-destabilizing agents and highlight the general utility of the VISAGE approach to elucidate molecular mechanisms of drug synergy.


Asunto(s)
Antineoplásicos/uso terapéutico , Inhibidores de Crecimiento/uso terapéutico , Neoplasias/tratamiento farmacológico , Pirimidinas/uso terapéutico , Huso Acromático/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Biología Computacional , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Sinergismo Farmacológico , Perfilación de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Huso Acromático/fisiología , Tubulina (Proteína)/metabolismo , Quinasa Tipo Polo 1
18.
Nat Struct Mol Biol ; 26(7): 571-582, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31235911

RESUMEN

Vasohibins are tubulin tyrosine carboxypeptidases that are important in neuron physiology. We examined the crystal structures of human vasohibin 1 and 2 in complex with small vasohibin-binding protein (SVBP) in the absence and presence of different inhibitors and a C-terminal α-tubulin peptide. In combination with functional data, we propose that SVBP acts as an activator of vasohibins. An extended groove and a distinctive surface residue patch of vasohibins define the specific determinants for recognizing and cleaving the C-terminal tyrosine of α-tubulin and for binding microtubules, respectively. The vasohibin-SVBP interaction and the ability of the enzyme complex to associate with microtubules regulate axon specification of neurons. Our results define the structural basis of tubulin detyrosination by vasohibins and show the relevance of this process for neuronal development. Our findings offer a unique platform for developing drugs against human conditions with abnormal tubulin tyrosination levels, such as cancer, heart defects and possibly brain disorders.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Angiogénicas/química , Animales , Proteínas Portadoras/química , Proteínas de Ciclo Celular/química , Células Cultivadas , Cristalografía por Rayos X , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Conformación Proteica , Mapas de Interacción de Proteínas , Tubulina (Proteína)/química
19.
J Chem Inf Model ; 59(5): 2218-2230, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30855963

RESUMEN

Epothilones are among the most potent chemotherapeutic drugs used for the treatment of cancer. Epothilone A (EpoA), a natural product, is a macrocyclic molecule containing 34 non-hydrogen atoms and a thiazole side chain. NMR studies of EpoA in aqueous solution, unbound as well as bound to αß-tubulin, and unbound in dimethyl sulfoxide (DMSO) solution have delivered sets of nuclear Overhauser effect (NOE) atom-atom distance bounds, but no structures based on NMR data are present in structural data banks. X-ray diffraction of crystals has provided structures of EpoA unbound and bound to αß-tubulin. Since both crystal structures derived from X-ray diffraction intensities do not completely satisfy the three available sets of NOE distance bounds for EpoA, molecular dynamics (MD) simulations have been employed to obtain conformational ensembles in aqueous and in DMSO solution that are compatible with the respective NOE data. It was found that EpoA displays a larger conformational variability in DMSO than in water and the two conformational ensembles show little overlap. Yet, they both provide conformational scaffolds that are energetically accessible at physiological temperature and pressure.


Asunto(s)
Epotilonas/química , Epotilonas/metabolismo , Simulación de Dinámica Molecular , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo , Tubulina (Proteína)/metabolismo , Dimetilsulfóxido/química , Ligandos , Conformación Molecular , Agua/química
20.
Int J Mol Sci ; 20(6)2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30897704

RESUMEN

It has been proposed that one of the mechanisms of taxane-site ligand-mediated tubulin activation is modulation of the structure of a switch element (the M-loop) from a disordered form in dimeric tubulin to a folded helical structure in microtubules. Here, we used covalent taxane-site ligands, including cyclostreptin, to gain further insight into this mechanism. The crystal structure of cyclostreptin-bound tubulin reveals covalent binding to ßHis229, but no stabilization of the M-loop. The capacity of cyclostreptin to induce microtubule assembly compared to other covalent taxane-site agents demonstrates that the induction of tubulin assembly is not strictly dependent on M-loop stabilization. We further demonstrate that most covalent taxane-site ligands are able to partially overcome drug resistance mediated by ßIII-tubulin (ßIII) overexpression in HeLa cells, and compare their activities to pironetin, an interfacial covalent inhibitor of tubulin assembly that displays invariant growth inhibition in these cells. Our findings suggest a relationship between a diminished interaction of taxane-site ligands with ßIII-tubulin and ßIII tubulin-mediated drug resistance. This supports the idea that overexpression of ßIII increases microtubule dynamicity by counteracting the enhanced microtubule stability promoted by covalent taxane-site binding ligands.


Asunto(s)
Microtúbulos/química , Compuestos Policíclicos/química , Tubulina (Proteína)/química , Resistencia a Antineoplásicos , Ácido Edético/química , Células HeLa , Humanos , Espectrometría de Masas , Taxoides/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA