Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
ACS Appl Mater Interfaces ; 16(5): 5666-5676, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38278776

RESUMEN

We report the design, synthesis, and in vitro evaluation of stimuli-responsive nanoscale micelles that can be activated by light to induce a cytotoxic effect. Micelles were assembled from amphiphilic units made of a photoactivatable ferrocenyl linker, connected on one side to a lipophilic chain, and on the other side to a hydrophilic pegylated chain. In vitro experiments indicated that pristine micelles ("off" state) were nontoxic to MCF-7 cancer cells, even at high concentrations, but became potent upon photoactivation ("on" state). The illumination process led to the dissociation of the micelles and the concomitant release of iron species, triggering cytotoxicity.


Asunto(s)
Antineoplásicos , Compuestos Ferrosos , Micelas , Metalocenos/farmacología , Fototerapia
2.
Colloids Surf B Biointerfaces ; 230: 113521, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37634283

RESUMEN

MOTIVATION: Amyloidoses are diseases caused by the accumulation of normally soluble proteins in the form of insoluble amyloids, leading to the gradual dysfunction and failure of various organs and tissues. Inhibiting amyloid formation is therefore an important therapeutic target. HYPOTHESIS: We hypothesized that mono- and di-gradient amphiphilic copolymers of hydrophilic 2-(m)ethyl-2-oxazoline and hydrophobic 2-aryl-2-oxazolines may inhibit amyloid fibril formation. EXPERIMENTS: In the model system with hen egg white lysozyme (HEWL) as amyloidogenic protein we determined the effect of these polymers on the amyloid formation by making use of the thioflavin T fluorescence, transmission electron microscopy, isothermal titration calorimetry, and dynamic light scattering. FINDINGS: We found that some gradient copolymers possess very potent concentration-dependent inhibitory effects on HEWL amyloid formation. Structure-activity relationship revealed that copolymers with higher ratios of aromatic monomeric units had stronger amyloid suppression effects, most plausibly due to the combination of hydrophobic and π-π interactions. The measurements also revealed that the polymers that inhibit amyloid formation most plausibly do so in the form of micelles that interact with the growing amyloid fibril ends, not with isolated HEWL molecules in solution. These findings suggest the potential use of these gradient copolymers as therapeutic agents for amyloidoses.


Asunto(s)
Amiloide , Amiloidosis , Humanos , Proteínas Amiloidogénicas , Calorimetría , Polímeros
3.
Nanoscale Adv ; 5(3): 955-969, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36756512

RESUMEN

Since the time of Faraday's experiments, the optical response of plasmonic nanofluids has been tailored by the shape, size, concentration, and material of nanoparticles (NPs), or by mixing different types of NPs. To date, water-based liquids have been the most extensively investigated host media, while polymers, such as poly(ethylene glycol) (PEG), have frequently been added to introduce repulsive steric interactions and protect NPs from agglomeration. Here, we introduce an inverse system of non-aqueous nanofluids, in which Ag and Cu NPs are dispersed in PEG (400 g mol-1), with no solvents or chemicals involved. Our single-step approach comprises the synthesis of metal NPs in the gas phase using sputtering-based gas aggregation cluster sources, gas flow transport of NPs, and their deposition (optionally simultaneous) on the PEG surface. Using computational fluid dynamics simulations, we show that NPs diffuse into PEG at an average velocity of the diffusion front of the order of µm s-1, which is sufficient for efficient loading of the entire polymer bulk. We synthesize yellow Ag/PEG, green Cu/PEG, and blue Ag/Cu/PEG nanofluids, in which the color is given by the position of the plasmon resonance. NPs are prone to partial agglomeration and sedimentation, with a slower kinetics for Cu. Density functional theory calculations combined with UV-vis data and zeta-potential measurements prove that the surface oxidation to Cu2O and stronger electrostatic repulsion are responsible for the higher stability of Cu NPs. Adopting the De Gennes formalism, we estimate that PEG molecules adsorb on the NP surface in mushroom coordination, with the thickness of the adsorbed layer L < 1.4 nm, grafting density σ < 0.20, and the average distance between the grafted chains D > 0.8 nm. Such values provide sufficient steric barriers to retard, but not completely prevent, agglomeration. Overall, our approach offers an excellent platform for fundamental research on non-aqueous nanofluids, with metal-polymer and metal-metal interactions unperturbed by the presence of solvents or chemical residues.

4.
Colloids Surf B Biointerfaces ; 218: 112778, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35998523

RESUMEN

Silver nanoparticles are versatile platforms with a variety of applications in the biomedical field. In this framework, their presence in biological media inevitably leads to the interaction with proteins thus conducting to the formation of biomolecular coronas. This feature alters the identity of the nanomaterial and may affect many biological events. These considerations motivated the investigation of protein adsorption onto the surface of polymer-stabilized AgNPs. The metallic colloids were coated by polyethyleneimine (PEI), polyvinylpyrrolidone (PVP), and poly(2-vinyl pyridine)-b-poly(ethylene oxide) (PEO-b-P2VP), and nanoparticle-protein interaction was probed by using a library of analytical techniques. The experimental data revealed a higher extent of protein adsorption at the surface of AgNPs@PVP whereas PEO-b-P2VP coating conducted to the least amount. The main component of the protein coronas was evidenced to be bovine serum albumin (BSA), which is indeed the protein at the highest abundancy in the model biological media. We have further demonstrated reduced cytotoxicity of the silver colloids coated by biomolecular coronas as compared to the pristine counterparts. Nevertheless, the protein coatings did not notably reduce the antimicrobial performance of the polymer-stabilized AgNPs. Accordingly, although the protein-repelling property is frequently targeted towards longer in vivo circulation of nanoparticles, we herein underline that protein coatings, which are commonly treated as artifacts to be avoided, may indeed enhance the biological performance of nanomaterials. These findings are expected to be highly relevant in the design of polymer-stabilized metallic colloids intended to be used in healthcare.


Asunto(s)
Nanopartículas del Metal , Corona de Proteínas , Antibacterianos/farmacología , Coloides , Óxido de Etileno , Polietileneimina/farmacología , Polímeros/farmacología , Povidona/farmacología , Corona de Proteínas/metabolismo , Piridinas , Albúmina Sérica Bovina , Plata/farmacología
5.
Polymers (Basel) ; 13(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34833268

RESUMEN

Iron and copper are essential micronutrients needed for the proper function of every cell. However, in excessive amounts, these elements are toxic, as they may cause oxidative stress, resulting in damage to the liver and other organs. This may happen due to poisoning, as a side effect of thalassemia infusion therapy or due to hereditary diseases hemochromatosis or Wilson's disease. The current golden standard of therapy of iron and copper overload is the use of low-molecular-weight chelators of these elements. However, these agents suffer from severe side effects, are often expensive and possess unfavorable pharmacokinetics, thus limiting the usability of such therapy. The emerging concepts are polymer-supported iron- and copper-chelating therapeutics, either for parenteral or oral use, which shows vivid potential to keep the therapeutic efficacy of low-molecular-weight agents, while avoiding their drawbacks, especially their side effects. Critical evaluation of this new perspective polymer approach is the purpose of this review article.

6.
J Control Release ; 332: 529-538, 2021 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-33716094

RESUMEN

The delivery of therapeutics into sites of action by using cargo-delivery platforms potentially minimizes their premature degradation and fast clearance from the bloodstream. Additionally, drug-loaded stimuli-responsive supramolecular assemblies can be produced to respond to the inherent features of tumor microenvironments, such as extracellular acidosis. We report in this framework the use of pH-responsive polymersomes (PSs) manufactured using poly([N-(2-hydroxypropyl)] methacrylamide)35-b-poly[2-(diisopropylamino)ethyl methacrylate]75 as the building unit (PHPMA35-b-PDPA75). The self-assemblies were produced with desired size towards long circulation time and tumor accumulation (hydrodynamic diameter - DH ~ 100 nm), and they could be successfully loaded with 10% w/w DOX (doxorubicin), while maintaining colloidal stability. The DOX loaded amount is presumably mainly burst-released at the acidic microenvironment of tumors thanks to the pH-switchable property of PDPA (pKa ~ 6.8), while reduced drug leakage has been monitored in pH 7.4. Compared to the administration of free DOX, the drug-loaded supramolecular structures greatly enhanced the therapeutic efficacy with effective growth inhibition of EL4 lymphoma tumor model and 100% survival rate in female C57BL/6 black mice over 40 days. The approach also led to reduced cardiotoxic effect. These features highlight the potential application of such nanotechnology-based treatment in a variety of cancer therapies where low local pH is commonly found, and emphasize PHPMA-based nanomedicines as an alternative to PEGylated formulations.


Asunto(s)
Doxorrubicina , Neoplasias , Animales , Cardiotoxicidad , Doxorrubicina/uso terapéutico , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos , Femenino , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
7.
Soft Matter ; 17(6): 1628-1641, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33355589

RESUMEN

We investigated the influence of glycogen (GG), phytoglycogen (PG), mannan (MAN) and cinnamoyl-modified GG (GG-CIN) on amyloid fibril formation. We used hen egg-white lysozyme (HEWL) as a model system and amyloid beta peptide (1-42) (Aß1-42) as an Alzheimer's disease-relevant system. For brief detection of fibrils was used thioflavin T (ThT) fluorescence assay and the results were confirmed by transmission electron microscopy (TEM). We also deal with the interaction of polysaccharides and HEWL with isothermal titration calorimetry (ITC) and dynamic light scattering (DLS). We found that all polysaccharides accelerated the formation of amyloid fibrils from both HEWL and Aß1-42. At high but physiologically relevant concentrations of GG, amyloid fibril formation was extremely accelerated for HEWL. Therefore, on the basis of the herein presented in vitro data, we hypothesize, that dietary d-glucose intake may influence amyloid fibril formation not only by influencing regulatory pathways, but also by direct glycogen-amyloid precursor protein molecular interaction, as glycogen levels in tissues are highly dependent on d-glucose intake.


Asunto(s)
Péptidos beta-Amiloides , Amiloide , Dispersión Dinámica de Luz , Glucógeno , Microscopía Electrónica de Transmisión
8.
Soft Matter ; 17(6): 1614-1627, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33355593

RESUMEN

The formation of amyloid fibrils from certain proteins stays behind a number of pathologies, so-called amyloidoses. Glycosaminoglycans are polysaccharides and are known natural constituents of amyloids in vivo. However, little is known about the effect of other naturally abundant polysaccharides, and even less is known about the effect of chemically modified polysaccharides on the formation of amyloid fibrils. In the case of low-molecular weight compounds, aromatic substances are known to often influence amyloid formation significantly. We investigated the influence of glycogen (GG) and several modifications of GG with cinnamoyl groups, benzoyl groups and phenylacetyl groups. As model systems, hen egg-white lysozyme (HEWL) and amyloid beta peptide (1-42) (Aß1-42), which is an Alzheimer disease-relevant system, were used. The fluorescence of thioflavin-T (ThT) was used for the rapid detection of fibrils, and the fluorescence results were confirmed by transmission electron microscopy (TEM). Other techniques, such as isothermal titration calorimetry (ITC) and dynamic light scattering (DLS), were employed to determine the interactions between HEWL and the modifications. We achieved similar results with both model systems (HEWL and Aß1-42). We showed that π-π interactions played an important role in the process of amyloid fibril formation because fundamental changes were observed in this process even with a very small number of groups containing an aromatic ring. It was found that almost all GG modifications accelerated the formation of amyloid fibrils in both model systems, HEWL and Aß1-42, except for GG-Ph1 (1.6 mol% phenylacetyl groups), which had a retarding effect compared to all other modifications.


Asunto(s)
Amiloide , Glucógeno , Péptidos beta-Amiloides , Dispersión Dinámica de Luz , Microscopía Electrónica de Transmisión
9.
Nanomaterials (Basel) ; 10(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867391

RESUMEN

Nanoparticles (NPs) represent an emerging platform for diagnosis and treatment of various diseases such as cancer, where they can take advantage of enhanced permeability and retention (EPR) effect for solid tumor accumulation. To improve their colloidal stability, prolong their blood circulation time and avoid premature entrapment into reticuloendothelial system, coating with hydrophilic biocompatible polymers is often essential. Most studies, however, employ just one type of coating polymer. The main purpose of this study is to head-to-head compare biological behavior of three leading polymers commonly used as "stealth" coating materials for biocompatibilization of NPs poly(ethylene oxide), poly(2-ethyl-2-oxazoline) and poly[N-(2-hydroxypropyl)methacrylamide] in an in vivo animal solid tumor model. We used radiolabeled biodegradable hydroxyapatite NPs as a model nanoparticle core within this study and we anchored the polymers to the NPs core by hydroxybisphosphonate end groups. The general suitability of polymers for coating of NPs intended for solid tumor accumulation is that poly(2-ethyl-2-oxazoline) and poly(ethylene oxide) gave comparably similar very good results, while poly[N-(2-hydroxypropyl)methacrylamide] was significantly worse. We did not observe a strong effect of molecular weight of the coating polymers on tumor and organ accumulation, blood circulation time, biodistribution and biodegradation of the NPs.

10.
Mater Sci Eng C Mater Biol Appl ; 111: 110850, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32279743

RESUMEN

The use of noble metal nanoparticles in biomedical and biotechnological applications is nowadays well established. Particularly, silver nanoparticles (AgNPs) were proven to be effective for instance as a biocide agent. They also find applications in tumor therapies and sensing applications being encouraging tools for in-vivo imaging. In this framework, whenever they are in contact with living systems, they are rapidly coated by a protein corona thereby influencing a variety of biological events including cellular uptake, blood circulation lifetime, cytotoxicity and, ultimately, the therapeutic effect. Taking these considerations into account, we have explored the behavior of polymer-coated AgNPs in model protein environments focusing on the self-development of protein coronas. The polymers polyethyleneimine (PEI), polyvinylpyrrolidone (PVP) and poly(2-vinyl pyridine)-b-poly(ethylene oxide) (PEO-b-P2VP) were used as stabilizing agents. The chemical nature of the polymer capping remarkably influences the behavior of the hybrid nanomaterials in protein environments. The PEO-b-P2VP and PVP-stabilized AgNPs are essentially inert to the model proteins adsorption. On the other hand, the PEI-stabilized AgNPs interact strongly with bovine serum albumin (BSA). Nevertheless, the same silver colloids were evidenced to be stable in IgG and lysozyme environments. The BSA adsorption into the PEI-stabilized AgNPs is most probably driven by hydrogen bonding and van der Waals interactions as suggested by isothermal titration calorimetry data. The development of protein coronas around the AgNPs may have relevant implications in a variety of biological events. Therefore, further investigations are currently underway to evaluate the influence of its presence on the cytotoxicity, hemolytic effects and biocide properties of the produced hybrid nanomaterials.


Asunto(s)
Coloides/química , Polímeros/química , Corona de Proteínas/química , Albúmina Sérica Bovina/química , Plata/química , Adsorción , Animales , Calorimetría , Bovinos , Pollos , Dispersión Dinámica de Luz , Nanopartículas/ultraestructura , Polietileneimina/química , Povidona/química , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
11.
Biomacromolecules ; 21(4): 1437-1449, 2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32083473

RESUMEN

The lack of cellular and tissue specificities in conventional chemotherapies along with the generation of a complex tumor microenvironment (TME) limits the dosage of active agents that reaches tumor sites, thereby resulting in ineffective responses and side effects. Therefore, the development of selective TME-responsive nanomedicines is of due relevance toward successful chemotherapies, albeit challenging. In this framework, we have synthesized novel, ready-to-use ROS-responsive amphiphilic block copolymers (BCs) with two different spacer chemistry designs to connect a hydrophobic boronic ester-based ROS sensor to the polymer backbone. Hydrodynamic flow focusing nanoprecipitation microfluidics (MF) was used in the preparation of well-defined ROS-responsive PSs; these were further characterized by a combination of techniques [1H NMR, dynamic light scattering (DLS), static light scattering (SLS), transmission electron microscopy (TEM), and cryogenic TEM (cryo-TEM)]. The reaction with hydrogen peroxide releases an amphiphilic phenol or a hydrophilic carboxylic acid, which affects polymersome (PS) stability and cargo release. Therefore, the importance of the spacer chemistry in BC deprotection and PS stability and cargo release is herein highlighted. We have also evaluated the impact of spacer chemistry on the PS-specific release of the chemotherapeutic drug doxorubicin (DOX) into tumors in vitro and in vivo. We demonstrate that by spacer chemistry design one can enhance the efficacy of DOX treatments (decrease in tumor growth and prolonged animal survival) in mice bearing EL4 T cell lymphoma. Side effects (weight loss and cardiotoxicity) were also reduced compared to free DOX administration, highlighting the potential of the well-defined ROS-responsive PSs as TME-selective nanomedicines. The PSs could also find applications in other environments with high ROS levels, such as chronic inflammations, aging, diabetes, cardiovascular diseases, and obesity.


Asunto(s)
Doxorrubicina , Neoplasias , Animales , Línea Celular Tumoral , Portadores de Fármacos , Ratones , Micelas , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno , Microambiente Tumoral
12.
Int J Nanomedicine ; 14: 6269-6285, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31496685

RESUMEN

BACKGROUND: Reactive oxygen species (ROS), such as hydrogen peroxide and superoxide, trigger biodegradation of polymer-based nanoparticles (NPs) bearing pinacol-type boronic ester groups. These NPs may selectively release their cargo, in this case paclitaxel (PTX), at the high levels of ROS present in the intracellular environment of inflamed tissues and most tumors. PURPOSE: The main objective was to determine anti-tumor efficacy of PTX-loaded ROS-sensitive NPs and to examine whether macrophage infiltration had any impact on treatment efficacy. METHODS: NPs were synthesized and their characteristics in the presence of H2O2 were demonstrated. Both confocal microscopy as well as flow cytometry approaches were used to determine degradation of ROS-sensitive NPs. HeLa cells were cultured in vitro and used to establish tumor xenografts in nude mice. In vivo experiments were performed to understand toxicity, biodistribution and anti-tumor efficacy of the NPs. Moreover, we performed immunohistochemistry on tumor sections to study infiltration of M1 and M2 subsets of macrophages. RESULTS: We demonstrated that PTX delivered in NPs containing a ROS-sensitive polymer exhibits a better anti-tumor efficacy than PTX in NPs containing ROS-non-sensitive polymer, free PTX or Abraxane® (nab-PTX). The biodistribution revealed that ROS-sensitive NPs exhibit retention in liver, spleen and lungs, suggesting a potential to target cancer metastasizing to these organs. Finally, we demonstrated a correlation between infiltrated macrophage subsets and treatment efficacy, possibly contributing to the efficient anti-tumor effects. CONCLUSION: Treatment with ROS-sensitive NPs containing PTX gave an improved therapeutic effect in HeLa xenografts than their counterpart, free PTX or nab-PTX. Our data revealed a correlation between macrophage infiltration and efficiency of the different antitumor treatments, as the most effective NPs resulted in the highest infiltration of the anti-tumorigenic M1 macrophages.


Asunto(s)
Albúminas/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Paclitaxel/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Paclitaxel Unido a Albúmina/uso terapéutico , Albúminas/farmacología , Animales , Línea Celular Tumoral , Femenino , Células HeLa , Humanos , Hidrodinámica , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Desnudos , Paclitaxel/farmacología , Tamaño de la Partícula , Polímeros/química , Distribución Tisular/efectos de los fármacos , Resultado del Tratamiento
13.
Colloids Surf B Biointerfaces ; 179: 143-152, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30954015

RESUMEN

The imaging of healthy tissues and solid tumors benefits from the application of nanoparticle probes with altered pharmacokinetics, not available to low molecular weight compounds. However, the distribution and accumulation of nanoprobes in vivo typically take at least tens of hours to be efficient. For nanoprobes bearing a radioactive label, this is contradictory to the requirement of minimizing the radiation dose for patients by using as-short-as-feasible half-life radionuclides in diagnostics. Thus, we developed a two-stage diagnostic concept for monitoring long-lasting targeting effects with short-lived radioactive labels using bone-mimicking biocompatible polymer-coated and colloidally fully stabilized hydroxyapatite nanoparticles (HAP NPs) and bone-seeking radiopharmaceuticals. Within the pretargeting stage, the nonlabeled nanoparticles are allowed to circulate in the blood. Afterward, 99mTc-1-hydroxyethylidene-1.1-diphosphonate (99mTc-HEDP) is administered intravenously for in situ labeling of the nanoparticles and subsequent single-photon emission computed tomography/computed tomography (SPECT/CT) visualization. The HAP NPs, stabilized with tailored hydrophilic polymers, are not cytotoxic in vitro, as shown by several cell lines. The polymer coating prolongs the circulation of HAP NPs in the blood. The nanoparticles were successfully labeled in vivo with 99mTc-HEDP, 1 and 24 h after injection, and they were visualized by SPECT/CT over time in healthy mice.


Asunto(s)
Durapatita/química , Nanopartículas/química , Polímeros/química , Radiofármacos/química , Animales , Línea Celular Tumoral , Endocitosis , Fluoresceína/química , Colorantes Fluorescentes/química , Humanos , Imagenología Tridimensional , Ratones Endogámicos BALB C , Nanopartículas/ultraestructura , Compuestos de Organotecnecio/química , Espectroscopía de Protones por Resonancia Magnética , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X
14.
Biomacromolecules ; 20(4): 1798-1815, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30785284

RESUMEN

Mycobacterium tuberculosis, the etiologic agent of tuberculosis, is an intracellular pathogen of alveolar macrophages. These cells avidly take up nanoparticles, even without the use of specific targeting ligands, making the use of nanotherapeutics ideal for the treatment of such infections. Methoxy poly(ethylene oxide)- block-poly(ε-caprolactone) nanoparticles of several different polymer blocks' molecular weights and sizes (20-110 nm) were developed and critically compared as carriers for rifampicin, a cornerstone in tuberculosis therapy. The polymeric nanoparticles' uptake, consequent organelle targeting and intracellular degradation were shown to be highly dependent on the nanoparticles' physicochemical properties (the cell uptake half-lives 2.4-21 min, the degradation half-lives 51.6 min-ca. 20 h after the internalization). We show that the nanoparticles are efficiently taken up by macrophages and are able to effectively neutralize the persisting bacilli. Finally, we demonstrate, using a zebrafish model of tuberculosis, that the nanoparticles are well tolerated, have a curative effect, and are significantly more efficient compared to a free form of rifampicin. Hence, these findings demonstrate that this system shows great promise, both in vitro and in vivo, for the treatment of tuberculosis.


Asunto(s)
Portadores de Fármacos , Macrófagos , Mycobacterium tuberculosis/crecimiento & desarrollo , Nanopartículas , Rifampin , Tuberculosis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Nanopartículas/química , Nanopartículas/uso terapéutico , Células RAW 264.7 , Rifampin/química , Rifampin/farmacocinética , Rifampin/farmacología , Tuberculosis/metabolismo , Tuberculosis/patología , Pez Cebra
15.
Biomacromolecules ; 19(7): 2443-2458, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29601729

RESUMEN

Polyester-based nanostructures are widely studied as drug-delivery systems due to their biocompatibility and biodegradability. They are already used in the clinic. In this work, we describe a new and simple biodegradable and biocompatible system as the Food and Drug Administration approved polyesters (poly-ε-caprolactone, polylactic acid, and poly(lactic- co-glycolic acid)) for the delivery of the anticancer drug paclitaxel (PTX) as a model drug. A hydrophobic polyester, poly(propylene succinate) (PPS), was prepared from a nontoxic alcohol (propylene glycol) and monomer from the Krebs's cycle (succinic acid) in two steps via esterification and melt polycondensation. Furthermore, their amphiphilic block copolyester, poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) (mPEO- b-PPS), was prepared by three steps via esterification followed by melt polycondensation and the addition of mPEO to the PPS macromolecules. Analysis of the in vitro cellular behavior of the prepared nanoparticle carriers (NPs) (enzymatic degradation, uptake, localization, and fluorescence resonance energy-transfer pair degradation studies) was performed by fluorescence studies. PTX was loaded to the NPs of variable sizes (30, 70, and 150 nm), and their in vitro release was evaluated in different cell models and compared with commercial PTX formulations. The mPEO- b-PPS copolymer analysis displays glass transition temperature < body temperature < melting temperature, lower toxicity (including the toxicity of their degradation products), drug solubilization efficacy, stability against spontaneous hydrolysis during transport in bloodstream, and simultaneous enzymatic degradability after uptake into the cells. The detailed cytotoxicity in vitro and in vivo tumor efficacy studies have shown the superior efficacy of the NPs compared with PTX and PTX commercial formulations.


Asunto(s)
Antineoplásicos/administración & dosificación , Nanopartículas/química , Paclitaxel/administración & dosificación , Animales , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos BALB C , Micelas , Nanopartículas/efectos adversos , Nanopartículas/metabolismo , Paclitaxel/farmacocinética , Poliésteres/síntesis química , Poliésteres/química , Polietilenglicoles/química , Polipropilenos/química , Succinatos/química
16.
Photodiagnosis Photodyn Ther ; 21: 275-284, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29288831

RESUMEN

BACKGROUND: Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site became a new standard in novel anticancer methods Anticancer photodynamic therapy also takes benefit from using nanoparticles by means of increasing targeting efficiency and decreased side effect. With this in mind, the silica-based nanoparticles, as drug delivery systems for the second-generation photosensitizer 5,10,15,20-tetrakis(m-hydroxyphenyl) chlorin (temoporfin) were developed. METHODS: In order to determine the stability and therapeutic performance of the selected nanomaterials in physiological fluids, their physicochemical properties (i.e. size, polydispersity, zeta potential) were measured by dynamic light scattering technique and the diameter and the morphology of the individual particles were visualized by a transmission electron microscopy. Their efficacy was compared with commercial temoporfin formulation in terms of in vitro phototoxicity in 4T1 (murine mammary carcinoma) and of in vivo anticancer effect in Nu/Nu mice bearing MDA-MB-231 tumors. RESULTS AND CONCLUSIONS: The two types of silica nanoparticles, porous and non-porous and with different surface chemical modification, were involved and critically compared within the study. Their efficacy was successfully demonstrated and was shown to be superior in comparison with commercial temoporfin formulation in terms of in vitro phototoxicity and cellular uptake as well as in terms of in vivo anticancer effect on human breast cancer model. Temoporfin-loaded silica nanoparticles also passed through the blood-brain barrier showing potential for the treatment of brain metastases.


Asunto(s)
Mesoporfirinas/administración & dosificación , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Dióxido de Silicio/química , Animales , Línea Celular Tumoral , Portadores de Fármacos/química , Liberación de Fármacos , Humanos , Mesoporfirinas/farmacología , Ratones Desnudos , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Fármacos Fotosensibilizantes/farmacología , Polietilenglicoles/química
17.
J Control Release ; 268: 78-91, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29031896

RESUMEN

A conceptually new bimodal immunoradiotherapy treatment was demonstrated using thermoresponsive polymer ß-glucan-graft-poly(2-isopropyl-2-oxazoline-co-2-butyl-2-oxazoline) bearing complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid with yttrium-90(III) at the graft ends. The behavior of this thermoresponsive polymer in aqueous solutions was studied, and it showed the appropriate cloud point temperature for brachytherapy applications. The polymer was tested in vitro, and it exhibited nontoxicity and active uptake into cancer cells and macrophages with colocalization in the lysosomes and macrophagosomes. Moreover, the observed oxidative burst response of the leukocytes established the immunostimulatory properties of the polymer, which were also studied in vivo after injection into the thigh muscles of healthy mice. The subsequent histological evaluation revealed the extensive immune activation reactions at the site of injection. Furthermore, the production of tumor necrosis factor α induced by the prepared polymer was observed in vitro, denoting the optimistic prognosis of the treatment. The biodistribution study in vivo indicated the formation of the polymer depot, which was gradually degraded and excluded from the body. The radiolabeled polymer was used during in vivo antitumor efficiency experiments on mice with EL4 lymphoma. The immunoradiotherapy group (treated with the radiolabeled polymer) demonstrated the complete inhibition of tumor growth during the beginning of the treatment. Moreover, 7 of the 15 mice were completely cured in this group, while the others exhibited significantly prolonged survival time compared to the control group. The in vivo experiments indicated the considerable synergistic effect of using immunoradiotherapy compared to separately using immunotherapy or radiotherapy.


Asunto(s)
Antineoplásicos/síntesis química , Compuestos Aza/química , Complejos de Coordinación/química , Compuestos Heterocíclicos con 1 Anillo/química , Oxazoles/química , Polímeros/química , Radioinmunoterapia/métodos , beta-Glucanos/química , Animales , Antibacterianos/síntesis química , Antibacterianos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Braquiterapia/métodos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Sistema Inmunológico/efectos de los fármacos , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Ratones Endogámicos C57BL , Oxidación-Reducción , Staphylococcus aureus/efectos de los fármacos , Temperatura , Radioisótopos de Itrio/química
18.
Nanomedicine ; 13(1): 307-315, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27613399

RESUMEN

We have developed a biodegradable, biocompatible system for the delivery of the antituberculotic antibiotic rifampicin with a built-in drug release and nanoparticle degradation fluorescence sensor. Polymer nanoparticles based on poly(ethylene oxide) monomethyl ether-block-poly(ε-caprolactone) were noncovalently loaded with rifampicin, a combination that, to best of our knowledge, was not previously described in the literature, which showed significant benefits. The nanoparticles contain a Förster resonance energy transfer (FRET) system that allows real-time assessment of drug release not only in vitro, but also in living macrophages where the mycobacteria typically reside as hard-to-kill intracellular parasites. The fluorophore also enables in situ monitoring of the enzymatic nanoparticle degradation in the macrophages. We show that the nanoparticles are efficiently taken up by macrophages, where they are very quickly associated with the lysosomal compartment. After drug release, the nanoparticles in the cmacrophages are enzymatically degraded, with half-life 88±11 min.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Macrófagos/metabolismo , Nanopartículas/química , Rifampin/administración & dosificación , Animales , Antituberculosos/administración & dosificación , Materiales Biocompatibles/química , Transferencia Resonante de Energía de Fluorescencia , Macrófagos/efectos de los fármacos , Ratones , Poliésteres/química , Polietilenglicoles/química , Células RAW 264.7
19.
J Control Release ; 241: 34-44, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27622757

RESUMEN

We developed fully biodegradable/metabolizable nanosystem based on polymer surfactant-stabilized thermoresponsive solid lipid nanoparticles with non-covalently bound photosensitizer temoporfin (T-SLNP) with particle size below 50nm. The efficacy of T-SLNP was compared with commercial temoporfin formulation in terms of in vitro phototoxicity in 4T1 (murine mammary carcinoma) and MDA-MB-231(human breast adenocarcinoma) cells and of in vivo anticancer effect in Nu/Nu mice bearing MDA-MB-231 tumors. In vitro study demonstrated faster accumulation kinetics in the cells for our formulation design resulting in higher phototoxicity against the tumor cells. In vivo anticancer efficacy was markedly improved by T-SLNP compared with commercial temoporfin formulation. Owing to controlled and sustained release properties, subcellular size, biocompatibility with tissue and cells, the T-SLNP nanodispersion prepared in this study represents promising drug delivery system applicable in cancer treatment.


Asunto(s)
Portadores de Fármacos/química , Alcoholes Grasos/administración & dosificación , Lípidos/química , Mesoporfirinas/química , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Animales , Línea Celular Tumoral , Alcoholes Grasos/uso terapéutico , Femenino , Humanos , Neoplasias Mamarias Experimentales/terapia , Ratones , Ratones Desnudos , Fármacos Fotosensibilizantes/uso terapéutico
20.
Nanoscale ; 8(13): 6958-63, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26961769

RESUMEN

A new drug-delivery system of polymer nanoparticles (NPs) bearing pinacol-type boronic ester and alkyne moieties displaying triggered self-immolative polymer degradation in the presence of reactive oxygen species (ROS) with the capability of cellular imaging is presented. The NPs specifically release their drug cargo under concentrations of ROS that are commonly found in the intracellular environment of certain tumors and of inflamed tissues and exhibit significant cytotoxicity to cancer cells compared to their non-ROS-responsive counterparts.


Asunto(s)
Ácidos Borónicos/química , Portadores de Fármacos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Colorantes Fluorescentes/química , Nanopartículas/química , Especies Reactivas de Oxígeno/farmacología , Células Cultivadas , Portadores de Fármacos/química , Colorantes Fluorescentes/farmacocinética , Humanos , Microscopía Fluorescente/métodos , Oxazinas/química , Oxazinas/farmacocinética , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA