Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell Rep Methods ; 1(5)2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34888541

RESUMEN

Tumors are dynamic ecosystems comprising localized niches (microdomains), possessing distinct compositions and spatial configurations of cancer and non-cancer cell populations. Microdomain-specific network signaling coevolves with a continuum of cell states and functional plasticity associated with disease progression and therapeutic responses. We present LEAPH, an unsupervised machine learning algorithm for identifying cell phenotypes, which applies recursive steps of probabilistic clustering and spatial regularization to derive functional phenotypes (FPs) along a continuum. Combining LEAPH with pointwise mutual information and network biology analyses enables the discovery of outcome-associated microdomains visualized as distinct spatial configurations of heterogeneous FPs. Utilization of an immunofluorescence-based (51 biomarkers) image dataset of colorectal carcinoma primary tumors (n = 213) revealed microdomain-specific network dysregulation supporting cancer stem cell maintenance and immunosuppression that associated selectively with the recurrence phenotype. LEAPH enables an explainable artificial intelligence platform providing insights into pathophysiological mechanisms and novel drug targets to inform personalized therapeutic strategies.


Asunto(s)
Inteligencia Artificial , Neoplasias Colorrectales , Humanos , Ecosistema , Algoritmos , Biomarcadores , Neoplasias Colorrectales/genética
2.
Nat Commun ; 11(1): 3515, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665557

RESUMEN

An unmet clinical need in solid tumor cancers is the ability to harness the intrinsic spatial information in primary tumors that can be exploited to optimize prognostics, diagnostics and therapeutic strategies for precision medicine. Here, we develop a transformational spatial analytics computational and systems biology platform (SpAn) that predicts clinical outcomes and captures emergent spatial biology that can potentially inform therapeutic strategies. We apply SpAn to primary tumor tissue samples from a cohort of 432 chemo-naïve colorectal cancer (CRC) patients iteratively labeled with a highly multiplexed (hyperplexed) panel of 55 fluorescently tagged antibodies. We show that SpAn predicts the 5-year risk of CRC recurrence with a mean AUROC of 88.5% (SE of 0.1%), significantly better than current state-of-the-art methods. Additionally, SpAn infers the emergent network biology of tumor microenvironment spatial domains revealing a spatially-mediated role of CRC consensus molecular subtype features with the potential to inform precision medicine.


Asunto(s)
Neoplasias Colorrectales/genética , Recurrencia Local de Neoplasia/genética , Biomarcadores/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Medicina de Precisión , Biología de Sistemas , Microambiente Tumoral/genética
3.
Mol Cancer Res ; 18(7): 1004-1017, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32238439

RESUMEN

To improve therapeutic responses in patients with glioma, new combination therapies that exploit a mechanistic understanding of the inevitable emergence of drug resistance are needed. Intratumoral heterogeneity enables a low barrier to resistance in individual patients with glioma. We reasoned that targeting two or more fundamental processes that gliomas are particularly dependent upon could result in pleiotropic effects that would reduce the diversity of resistant subpopulations allowing convergence to a more robust therapeutic strategy. In contrast to the cytostatic responses observed with each drug alone, the combination of the histone deacetylase inhibitor panobinostat and the proteasome inhibitor bortezomib synergistically induced apoptosis of adult and pediatric glioma cell lines at clinically achievable doses. Resistance that developed was examined using RNA-sequencing and pharmacologic screening of resistant versus drug-naïve cells. Quinolinic acid phosphoribosyltransferase (QPRT), the rate-determining enzyme for de novo synthesis of NAD+ from tryptophan, exhibited particularly high differential gene expression in resistant U87 cells and protein expression in all resistant lines tested. Reducing QPRT expression reversed resistance, suggesting that QPRT is a selective and targetable dependency for the panobinostat-bortezomib resistance phenotype. Pharmacologic inhibition of either NAD+ biosynthesis or processes such as DNA repair that consume NAD+ or their simultaneous inhibition with drug combinations, specifically enhanced apoptosis in treatment-resistant cells. Concomitantly, de novo vulnerabilities to known drugs were observed. IMPLICATIONS: These data provide new insights into mechanisms of treatment resistance in gliomas, hold promise for targeting recurrent disease, and provide a potential strategy for further exploration of next-generation inhibitors.


Asunto(s)
Bortezomib/farmacología , Resistencia a Antineoplásicos , Glioma/genética , Panobinostat/farmacología , Pentosiltransferasa/genética , Regulación hacia Arriba , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioma/tratamiento farmacológico , Glioma/metabolismo , Humanos , NAD/biosíntesis , Pentosiltransferasa/antagonistas & inhibidores , Pentosiltransferasa/metabolismo , Interferencia de ARN , Análisis de Secuencia de ARN
4.
Sci Rep ; 9(1): 8341, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31171849

RESUMEN

Reciprocal coevolution of tumors and their microenvironments underlies disease progression, yet intrinsic limitations of patient-derived xenografts and simpler cell-based models present challenges towards a deeper understanding of these intercellular communication networks. To help overcome these barriers and complement existing models, we have developed a human microphysiological system (MPS) model of the human liver acinus, a common metastatic site, and have applied this system to estrogen receptor (ER)+ breast cancer. In addition to their hallmark constitutive (but ER-dependent) growth phenotype, different ESR1 missense mutations, prominently observed during estrogen deprivation therapy, confer distinct estrogen-enhanced growth and drug resistant phenotypes not evident under cell autonomous conditions. Under low molecular oxygen within the physiological range (~5-20%) of the normal liver acinus, the estrogen-enhanced growth phenotypes are lost, a dependency not observed in monoculture. In contrast, the constitutive growth phenotypes are invariant within this range of molecular oxygen suggesting that ESR1 mutations confer a growth advantage not only during estrogen deprivation but also at lower oxygen levels. We discuss the prospects and limitations of implementing human MPS, especially in conjunction with in situ single cell hyperplexed computational pathology platforms, to identify biomarkers mechanistically linked to disease progression that inform optimal therapeutic strategies for patients.


Asunto(s)
Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Hígado/metabolismo , Mutación , Biomarcadores de Tumor , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Técnicas de Cocultivo , Criopreservación , Progresión de la Enfermedad , Receptor alfa de Estrógeno/metabolismo , Femenino , Hepatocitos/metabolismo , Humanos , Hígado/patología , Células MCF-7 , Microscopía Confocal , Mutación Missense , Metástasis de la Neoplasia , Trasplante de Neoplasias , Oxígeno/metabolismo , Fenotipo , Resultado del Tratamiento , Microambiente Tumoral
5.
Nature ; 561(7723): 420, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30046103

RESUMEN

This Letter is being retracted owing to issues with Fig. 1d and Supplementary Fig. 31b, and the unavailability of original data for these figures that raise concerns regarding the integrity of the figures. Nature published two previous corrections related to this Letter1,2. These issues in aggregate undermine the confidence in the integrity of this study. Authors Michael Foley, Monica Schenone, Nicola J. Tolliday, Todd R. Golub, Steven A. Carr, Alykhan F. Shamji, Andrew M. Stern and Stuart L. Schreiber agree with the Retraction. Authors Lakshmi Raj, Takao Ide, Aditi U. Gurkar, Anna Mandinova and Sam W. Lee disagree with the Retraction. Author Xiaoyu Li did not respond.

6.
Methods Mol Biol ; 1787: 207-222, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29736721

RESUMEN

Designing effective therapeutic strategies for complex diseases such as cancer and neurodegeneration that involve tissue context-specific interactions among multiple gene products presents a major challenge for precision medicine. Safe and selective pharmacological modulation of individual molecular entities associated with a disease often fails to provide efficacy in the clinic. Thus, development of optimized therapeutic strategies for individual patients with complex diseases requires a more comprehensive, systems-level understanding of disease progression. Quantitative systems pharmacology (QSP) is an approach to drug discovery that integrates computational and experimental methods to understand the molecular pathogenesis of a disease at the systems level more completely. Described here is the chemogenomic component of QSP for the inference of biological pathways involved in the modulation of the disease phenotype. The approach involves testing sets of compounds of diverse mechanisms of action in a disease-relevant phenotypic assay, and using the mechanistic information known for the active compounds, to infer pathways and networks associated with the phenotype. The example used here is for monogenic Huntington's disease (HD), which due to the pleiotropic nature of the mutant phenotype has a complex pathogenesis. The overall approach, however, is applicable to any complex disease.


Asunto(s)
Estudios de Asociación Genética/métodos , Fenotipo , Biología de Sistemas/métodos , Tecnología Farmacéutica/métodos , Biomarcadores , Bases de Datos Factuales , Humanos , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/etiología , Enfermedad de Huntington/metabolismo , Medicina de Precisión/métodos , Navegador Web
7.
Oncology ; 94(3): 176-189, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29306943

RESUMEN

OBJECTIVE: Twenty to fifty percent of estrogen receptor-positive (ER+) metastatic breast cancers express mutations within the ER ligand-binding domain. While most studies focused on the constitutive ER signaling activity commonly engendered by these mutations selected during estrogen deprivation therapy, our study was aimed at investigating distinctive phenotypes conferred by different mutations within this class. METHODS: We examined the two most prevalent mutations, D538G and Y537S, employing corroborative genome-edited and lentiviral-transduced ER+ T47D cell models. We used a luciferase-based reporter and endogenous phospho-ER immunoblot analysis to characterize the estrogen response of ER mutants and determined their resistance to known ER antagonists. RESULTS: Consistent with their selection during estrogen deprivation therapy, these mutants conferred constitutive ER activity. While Y537S mutants showed no estrogen dependence, D538G mutants demonstrated an enhanced estrogen-dependent response. Both mutations conferred resistance to ER antagonists that was overcome at higher doses acting specifically through their ER target. CONCLUSIONS: These observations provide a tenable hypothesis for how D538G ESR1-expressing clones can contribute to shorter progression-free survival observed in the exemestane arm of the BOLERO-2 study. Thus, in those patients with dominant D538G-expressing clones, longitudinal analysis for this mutation in circulating free DNA may prove beneficial for informing more optimal therapeutic regimens.


Asunto(s)
Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Mutación/genética , Línea Celular Tumoral , Supervivencia sin Enfermedad , Resistencia a Antineoplásicos/genética , Estrógenos/genética , Femenino , Humanos , Fenotipo , Transducción de Señal/genética
8.
Sci Rep ; 7(1): 17803, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259176

RESUMEN

Quantitative Systems Pharmacology (QSP) is a drug discovery approach that integrates computational and experimental methods in an iterative way to gain a comprehensive, unbiased understanding of disease processes to inform effective therapeutic strategies. We report the implementation of QSP to Huntington's Disease, with the application of a chemogenomics platform to identify strategies to protect neuronal cells from mutant huntingtin induced death. Using the STHdh Q111 cell model, we investigated the protective effects of small molecule probes having diverse canonical modes-of-action to infer pathways of neuronal cell protection connected to drug mechanism. Several mechanistically diverse protective probes were identified, most of which showed less than 50% efficacy. Specific combinations of these probes were synergistic in enhancing efficacy. Computational analysis of these probes revealed a convergence of pathways indicating activation of PKA. Analysis of phospho-PKA levels showed lower cytoplasmic levels in STHdh Q111 cells compared to wild type STHdh Q7 cells, and these levels were increased by several of the protective compounds. Pharmacological inhibition of PKA activity reduced protection supporting the hypothesis that protection may be working, in part, through activation of the PKA network. The systems-level studies described here can be broadly applied to any discovery strategy involving small molecule modulation of disease phenotype.


Asunto(s)
Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Sustancias Protectoras/farmacología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Combinación de Medicamentos , Proteína Huntingtina/metabolismo , Ratones , Mutación/efectos de los fármacos , Fenotipo , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
9.
Cancer Res ; 77(21): e71-e74, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29092944

RESUMEN

We introduce THRIVE (Tumor Heterogeneity Research Interactive Visualization Environment), an open-source tool developed to assist cancer researchers in interactive hypothesis testing. The focus of this tool is to quantify spatial intratumoral heterogeneity (ITH), and the interactions between different cell phenotypes and noncellular constituents. Specifically, we foresee applications in phenotyping cells within tumor microenvironments, recognizing tumor boundaries, identifying degrees of immune infiltration and epithelial/stromal separation, and identification of heterotypic signaling networks underlying microdomains. The THRIVE platform provides an integrated workflow for analyzing whole-slide immunofluorescence images and tissue microarrays, including algorithms for segmentation, quantification, and heterogeneity analysis. THRIVE promotes flexible deployment, a maintainable code base using open-source libraries, and an extensible framework for customizing algorithms with ease. THRIVE was designed with highly multiplexed immunofluorescence images in mind, and, by providing a platform to efficiently analyze high-dimensional immunofluorescence signals, we hope to advance these data toward mainstream adoption in cancer research. Cancer Res; 77(21); e71-74. ©2017 AACR.


Asunto(s)
Heterogeneidad Genética , Neoplasias/genética , Imagen Óptica/estadística & datos numéricos , Programas Informáticos , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias/patología , Imagen Óptica/métodos , Análisis de Matrices Tisulares/estadística & datos numéricos
10.
Breast Cancer Res ; 19(1): 60, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28535794

RESUMEN

BACKGROUND: Mutations in the estrogen receptor alpha (ERα) 1 gene (ESR1) are frequently detected in ER+ metastatic breast cancer, and there is increasing evidence that these mutations confer endocrine resistance in breast cancer patients with advanced disease. However, their functional role is not well-understood, at least in part due to a lack of ESR1 mutant models. Here, we describe the generation and characterization of genome-edited T47D and MCF7 breast cancer cell lines with the two most common ESR1 mutations, Y537S and D538G. METHODS: Genome editing was performed using CRISPR and adeno-associated virus (AAV) technologies to knock-in ESR1 mutations into T47D and MCF7 cell lines, respectively. Various techniques were utilized to assess the activity of mutant ER, including transactivation, growth and chromatin-immunoprecipitation (ChIP) assays. The level of endocrine resistance was tested in mutant cells using a number of selective estrogen receptor modulators (SERMs) and degraders (SERDs). RNA sequencing (RNA-seq) was employed to study gene targets of mutant ER. RESULTS: Cells with ESR1 mutations displayed ligand-independent ER activity, and were resistant to several SERMs and SERDs, with cell line and mutation-specific differences with respect to magnitude of effect. The SERD AZ9496 showed increased efficacy compared to other drugs tested. Wild-type and mutant cell co-cultures demonstrated a unique evolution of mutant cells under estrogen deprivation and tamoxifen treatment. Transcriptome analysis confirmed ligand-independent regulation of ERα target genes by mutant ERα, but also identified novel target genes, some of which are involved in metastasis-associated phenotypes. Despite significant overlap in the ligand-independent genes between Y537S and D538G, the number of mutant ERα-target genes shared between the two cell lines was limited, suggesting context-dependent activity of the mutant receptor. Some genes and phenotypes were unique to one mutation within a given cell line, suggesting a mutation-specific effect. CONCLUSIONS: Taken together, ESR1 mutations in genome-edited breast cancer cell lines confer ligand-independent growth and endocrine resistance. These biologically relevant models can be used for further mechanistic and translational studies, including context-specific and mutation site-specific analysis of the ESR1 mutations.


Asunto(s)
Neoplasias de la Mama/genética , Proliferación Celular/genética , Receptor alfa de Estrógeno/genética , Genoma Humano/genética , Neoplasias de la Mama/patología , Técnicas de Cocultivo , Análisis Mutacional de ADN , Dependovirus/genética , Femenino , Edición Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células MCF-7 , Mutación , Metástasis de la Neoplasia , Tamoxifeno/administración & dosificación
11.
SLAS Discov ; 22(3): 213-237, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28231035

RESUMEN

Heterogeneity is a fundamental property of biological systems at all scales that must be addressed in a wide range of biomedical applications, including basic biomedical research, drug discovery, diagnostics, and the implementation of precision medicine. There are a number of published approaches to characterizing heterogeneity in cells in vitro and in tissue sections. However, there are no generally accepted approaches for the detection and quantitation of heterogeneity that can be applied in a relatively high-throughput workflow. This review and perspective emphasizes the experimental methods that capture multiplexed cell-level data, as well as the need for standard metrics of the spatial, temporal, and population components of heterogeneity. A recommendation is made for the adoption of a set of three heterogeneity indices that can be implemented in any high-throughput workflow to optimize the decision-making process. In addition, a pairwise mutual information method is suggested as an approach to characterizing the spatial features of heterogeneity, especially in tissue-based imaging. Furthermore, metrics for temporal heterogeneity are in the early stages of development. Example studies indicate that the analysis of functional phenotypic heterogeneity can be exploited to guide decisions in the interpretation of biomedical experiments, drug discovery, diagnostics, and the design of optimal therapeutic strategies for individual patients.


Asunto(s)
Heterogeneidad Genética , Aprendizaje Automático , Neoplasias/tratamiento farmacológico , Medicina de Precisión/métodos , Biología de Sistemas/métodos , Toma de Decisiones , Técnicas de Apoyo para la Decisión , Descubrimiento de Drogas/métodos , Citometría de Flujo/métodos , Citometría de Flujo/normas , Histocitoquímica/métodos , Histocitoquímica/normas , Humanos , Imagenología Tridimensional/métodos , Imagenología Tridimensional/normas , Neoplasias/genética , Neoplasias/patología , Valores de Referencia , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/normas , Biología de Sistemas/estadística & datos numéricos
12.
J Pathol Inform ; 7: 47, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27994939

RESUMEN

BACKGROUND: Measures of spatial intratumor heterogeneity are potentially important diagnostic biomarkers for cancer progression, proliferation, and response to therapy. Spatial relationships among cells including cancer and stromal cells in the tumor microenvironment (TME) are key contributors to heterogeneity. METHODS: We demonstrate how to quantify spatial heterogeneity from immunofluorescence pathology samples, using a set of 3 basic breast cancer biomarkers as a test case. We learn a set of dominant biomarker intensity patterns and map the spatial distribution of the biomarker patterns with a network. We then describe the pairwise association statistics for each pattern within the network using pointwise mutual information (PMI) and visually represent heterogeneity with a two-dimensional map. RESULTS: We found a salient set of 8 biomarker patterns to describe cellular phenotypes from a tissue microarray cohort containing 4 different breast cancer subtypes. After computing PMI for each pair of biomarker patterns in each patient and tumor replicate, we visualize the interactions that contribute to the resulting association statistics. Then, we demonstrate the potential for using PMI as a diagnostic biomarker, by comparing PMI maps and heterogeneity scores from patients across the 4 different cancer subtypes. Estrogen receptor positive invasive lobular carcinoma patient, AL13-6, exhibited the highest heterogeneity score among those tested, while estrogen receptor negative invasive ductal carcinoma patient, AL13-14, exhibited the lowest heterogeneity score. CONCLUSIONS: This paper presents an approach for describing intratumor heterogeneity, in a quantitative fashion (via PMI), which departs from the purely qualitative approaches currently used in the clinic. PMI is generalizable to highly multiplexed/hyperplexed immunofluorescence images, as well as spatial data from complementary in situ methods including FISSEQ and CyTOF, sampling many different components within the TME. We hypothesize that PMI will uncover key spatial interactions in the TME that contribute to disease proliferation and progression.

13.
ACS Med Chem Lett ; 7(10): 944-949, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27774134

RESUMEN

Evidence suggests that specific mutations of isocitrate dehydrogenases 1 and 2 (IDH1/2) are critical for the initiation and maintenance of certain tumor types and that inhibiting these mutant enzymes with small molecules may be therapeutically beneficial. In order to discover mutant allele-selective IDH1 inhibitors with chemical features distinct from existing probes, we screened a collection of small molecules derived from diversity-oriented synthesis. The assay identified compounds that inhibit the IDH1-R132H mutant allele commonly found in glioma. Here, we report the discovery of a potent (IC50 = 50 nM) series of IDH1-R132H inhibitors having 8-membered ring sulfonamides as exemplified by the compound BRD2879. The inhibitors suppress (R)-2-hydroxyglutarate production in cells without apparent toxicity. Although the solubility and pharmacokinetic properties of the specific inhibitor BRD2879 prevent its use in vivo, the scaffold presents a validated starting point for the synthesis of future IDH1-R132H inhibitors having improved pharmacological properties.

14.
Clin Cancer Res ; 22(5): 1130-7, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26500237

RESUMEN

PURPOSE: Given the clinical relevance of ESR1 mutations as potential drivers of resistance to endocrine therapy, this study used sensitive detection methods to determine the frequency of ESR1 mutations in primary and metastatic breast cancer, and in cell-free DNA (cfDNA). EXPERIMENTAL DESIGN: Six ESR1 mutations (K303R, S463P, Y537C, Y537N, Y537S, D538G) were assessed by digital droplet PCR (ddPCR), with lower limits of detection of 0.05% to 0.16%, in primary tumors (n = 43), bone (n = 12) and brain metastases (n = 38), and cfDNA (n = 29). Correlations between ESR1 mutations in metastatic lesions and single (1 patient) or serial blood draws (4 patients) were assessed. RESULTS: ESR1 mutations were detected for D538G (n = 13), Y537S (n = 3), and Y537C (n = 1), and not for K303R, S463P, or Y537N. Mutation rates were 7.0% (3/43 primary tumors), 9.1% (1/11 bone metastases), 12.5% (3/24 brain metastases), and 24.1% (7/29 cfDNA). Two patients showed polyclonal disease with more than one ESR1 mutation. Mutation allele frequencies were 0.07% to 0.2% in primary tumors, 1.4% in bone metastases, 34.3% to 44.9% in brain metastases, and 0.2% to 13.7% in cfDNA. In cases with both cfDNA and metastatic samples (n = 5), mutations were detected in both (n = 3) or in cfDNA only (n = 2). Treatment was associated with changes in ESR1 mutation detection and allele frequency. CONCLUSIONS: ESR1 mutations were detected at very low allele frequencies in some primary breast cancers, and at high allele frequency in metastases, suggesting that in some tumors rare ESR1-mutant clones are enriched by endocrine therapy. Further studies should address whether sensitive detection of ESR1 mutations in primary breast cancer and in serial blood draws may be predictive for development of resistant disease. See related commentary by Gu and Fuqua, p. 1034.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Encefálicas/genética , Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Adulto , Anciano , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Evolución Clonal/genética , ADN de Neoplasias/genética , Femenino , Frecuencia de los Genes , Humanos , Metástasis Linfática/genética , Persona de Mediana Edad , Mutación
16.
Mol Cell Endocrinol ; 418 Pt 3: 322-33, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26276546

RESUMEN

Endometrial and ovarian cancers are estrogen-dependent gynecologic malignancies. Although many are estrogen receptor (ER) positive, treatment with the selective estrogen receptor modulator (SERM) tamoxifen, a tissue selective partial-agonist, has demonstrated only modest clinical benefit. Selective estrogen receptor downregulators (SERDs) are pure ER antagonists showing a benefit for advanced ER positive breast cancer, which has bolstered their potential use for ER positive gynecologic malignancies. We summarize these preclinical and clinical data, suggesting that a subpopulation of patients with endometrial or ovarian cancer exists in which treatment with SERDs results in improved outcome. However, the full potential of SERDs for a gynecologic malignancies will be realized only when the appropriate predictive biomarkers are identified. Additionally, a further understanding ER signaling in the context of ovarian and endometrial tissues that appear to involve c-Src and other kinase pathways is needed to successfully address the emergence of resistance with rationally designed combination therapies.


Asunto(s)
Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Ensayos Clínicos como Asunto , Resistencia a Antineoplásicos , Neoplasias Endometriales/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Ováricas/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
17.
Cell Rep ; 10(5): 755-770, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25660025

RESUMEN

Novel therapeutic approaches are urgently required for multiple myeloma (MM). We used a phenotypic screening approach using co-cultures of MM cells with bone marrow stromal cells to identify compounds that overcome stromal resistance. One such compound, BRD9876, displayed selectivity over normal hematopoietic progenitors and was discovered to be an unusual ATP non-competitive kinesin-5 (Eg5) inhibitor. A novel mutation caused resistance, suggesting a binding site distinct from known Eg5 inhibitors, and BRD9876 inhibited only microtubule-bound Eg5. Eg5 phosphorylation, which increases microtubule binding, uniquely enhanced BRD9876 activity. MM cells have greater phosphorylated Eg5 than hematopoietic cells, consistent with increased vulnerability specifically to BRD9876's mode of action. Thus, differences in Eg5-microtubule binding between malignant and normal blood cells may be exploited to treat multiple myeloma. Additional steps are required for further therapeutic development, but our results indicate that unbiased chemical biology approaches can identify therapeutic strategies unanticipated by prior knowledge of protein targets.

18.
PLoS One ; 9(7): e102678, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25036749

RESUMEN

One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has become an accepted characteristic of a population of cells, in drug discovery it is not routinely evaluated or reported. The standard practice for cell-based, high content assays has been to assume a normal distribution and to report a well-to-well average value with a standard deviation. To address this important issue we sought to define a method that could be readily implemented to identify, quantify and characterize heterogeneity in cellular and small organism assays to guide decisions during drug discovery and experimental cell/tissue profiling. Our study revealed that heterogeneity can be effectively identified and quantified with three indices that indicate diversity, non-normality and percent outliers. The indices were evaluated using the induction and inhibition of STAT3 activation in five cell lines where the systems response including sample preparation and instrument performance were well characterized and controlled. These heterogeneity indices provide a standardized method that can easily be integrated into small and large scale screening or profiling projects to guide interpretation of the biology, as well as the development of therapeutics and diagnostics. Understanding the heterogeneity in the response to perturbagens will become a critical factor in designing strategies for the development of therapeutics including targeted polypharmacology.


Asunto(s)
Descubrimiento de Drogas/métodos , Línea Celular Tumoral , Humanos , Células MCF-7 , Factor de Transcripción STAT3/metabolismo
19.
PLoS One ; 9(2): e88350, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24520372

RESUMEN

Profilin-1 (Pfn-1) is a ubiquitously expressed actin-binding protein that is essential for normal cell proliferation and migration. In breast cancer and several other adenocarcinomas, Pfn-1 expression is downregulated when compared to normal tissues. Previous studies from our laboratory have shown that genetically modulating Pfn-1 expression significantly impacts proliferation, migration, and invasion of breast cancer cells in vitro, and mammary tumor growth, dissemination, and metastatic colonization in vivo. Therefore, small molecules that can modulate Pfn-1 expression could have therapeutic potential in the treatment of metastatic breast cancer. The overall goal of this study was to perform a multiplexed phenotypic screen to identify compounds that inhibit cell motility through upregulation of Pfn-1. Screening of a test cassette of 1280 compounds with known biological activities on an Oris™ Pro 384 cell migration platform identified several agents that increased Pfn-1 expression greater than two-fold over vehicle controls and exerted anti-migratory effects in the absence of overt cytotoxicity in MDA-MB-231 human breast cancer cells. Concentration-response confirmation and orthogonal follow-up assays identified two bona fide inducers of Pfn-1, purvalanol and tyrphostin A9, that confirmed in single-cell motility assays and Western blot analyses. SiRNA-mediated knockdown of Pfn-1 abrogated the inhibitory effect of tyrphostin A9 on cell migration, suggesting Pfn-1 is mechanistically linked to tyrphostin A9's anti-migratory activity. The data illustrate the utility of the high-content cell motility assay to discover novel targeted anti-migratory agents by integrating functional phenotypic analyses with target-specific readouts in a single assay platform.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Movimiento Celular , Ensayos Analíticos de Alto Rendimiento/métodos , Profilinas/metabolismo , Adenina/farmacología , Línea Celular Tumoral , Ensayos de Migración Celular , Movimiento Celular/efectos de los fármacos , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas , Tirfostinos/farmacología
20.
Nat Chem Biol ; 9(12): 840-848, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24161946

RESUMEN

Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those compounds that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on target, via inhibition of HMG-CoA reductase. These results illustrate the power of merging physiologically relevant models with high-throughput screening.


Asunto(s)
Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Leucemia , Células Madre Neoplásicas/efectos de los fármacos , Línea Celular Tumoral , Células Madre Hematopoyéticas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Lovastatina/farmacología , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA