Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Chem ; 294(19): 7740-7754, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30914481

RESUMEN

An efficient immunosurveillance of CD8+ T cells in the periphery depends on positive/negative selection of thymocytes and thus on the dynamics of antigen degradation and epitope production by thymoproteasome and immunoproteasome in the thymus. Although studies in mouse systems have shown how thymoproteasome activity differs from that of immunoproteasome and strongly impacts the T cell repertoire, the proteolytic dynamics and the regulation of human thymoproteasome are unknown. By combining biochemical and computational modeling approaches, we show here that human 20S thymoproteasome and immunoproteasome differ not only in the proteolytic activity of the catalytic sites but also in the peptide transport. These differences impinge upon the quantity of peptide products rather than where the substrates are cleaved. The comparison of the two human 20S proteasome isoforms depicts different processing of antigens that are associated to tumors and autoimmune diseases.


Asunto(s)
Presentación de Antígeno , Linfocitos T CD8-positivos/enzimología , Simulación por Computador , Complejo de la Endopetidasa Proteasomal/química , Células A549 , Animales , Linfocitos T CD8-positivos/inmunología , Catálisis , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/inmunología , Células THP-1
2.
Stem Cells ; 35(11): 2292-2304, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28833970

RESUMEN

The hematopoietic stem cell (HSC) niche provides essential microenvironmental cues for the production and maintenance of HSCs within the bone marrow. During inflammation, hematopoietic dynamics are perturbed, but it is not known whether changes to the HSC-niche interaction occur as a result. We visualize HSCs directly in vivo, enabling detailed analysis of the 3D niche dynamics and migration patterns in murine bone marrow following Trichinella spiralis infection. Spatial statistical analysis of these HSC trajectories reveals two distinct modes of HSC behavior: (a) a pattern of revisiting previously explored space and (b) a pattern of exploring new space. Whereas HSCs from control donors predominantly follow pattern (a), those from infected mice adopt both strategies. Using detailed computational analyses of cell migration tracks and life-history theory, we show that the increased motility of HSCs following infection can, perhaps counterintuitively, enable mice to cope better in deteriorating HSC-niche microenvironments following infection. Stem Cells 2017;35:2292-2304.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Infecciones/genética , Animales , Movimiento Celular , Células Madre Hematopoyéticas/citología , Ratones , Modelos Teóricos , Fenotipo
3.
PLoS One ; 12(5): e0177336, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28489927

RESUMEN

We determine p53 protein abundances and cell to cell variation in two human cancer cell lines with single cell resolution, and show that the fractional width of the distributions is the same in both cases despite a large difference in average protein copy number. We developed a computational framework to identify dominant mechanisms controlling the variation of protein abundance in a simple model of gene expression from the summary statistics of single cell steady state protein expression distributions. Our results, based on single cell data analysed in a Bayesian framework, lends strong support to a model in which variation in the basal p53 protein abundance may be best explained by variations in the rate of p53 protein degradation. This is supported by measurements of the relative average levels of mRNA which are very similar despite large variation in the level of protein.


Asunto(s)
Neoplasias de la Mama/patología , Mama/patología , Neoplasias Colorrectales/patología , Proteína p53 Supresora de Tumor/análisis , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Proteolisis , ARN Mensajero/análisis , ARN Mensajero/genética , Transcripción Genética , Proteína p53 Supresora de Tumor/genética
4.
Stem Cells ; 35(1): 80-88, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27671750

RESUMEN

Stem cells are fundamental to human life and offer great therapeutic potential, yet their biology remains incompletely-or in cases even poorly-understood. The field of stem cell biology has grown substantially in recent years due to a combination of experimental and theoretical contributions: the experimental branch of this work provides data in an ever-increasing number of dimensions, while the theoretical branch seeks to determine suitable models of the fundamental stem cell processes that these data describe. The application of population dynamics to biology is amongst the oldest applications of mathematics to biology, and the population dynamics perspective continues to offer much today. Here we describe the impact that such a perspective has made in the field of stem cell biology. Using hematopoietic stem cells as our model system, we discuss the approaches that have been used to study their key properties, such as capacity for self-renewal, differentiation, and cell fate lineage choice. We will also discuss the relevance of population dynamics in models of stem cells and cancer, where competition naturally emerges as an influential factor on the temporal evolution of cell populations. Stem Cells 2017;35:80-88.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas/citología , Animales , Células Madre Hematopoyéticas/metabolismo , Humanos , Modelos Biológicos , Nicho de Células Madre
5.
Science ; 354(6310): 354-358, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27846572

RESUMEN

The proteasome generates the epitopes presented on human leukocyte antigen (HLA) class I molecules that elicit CD8+ T cell responses. Reports of proteasome-generated spliced epitopes exist, but they have been regarded as rare events. Here, however, we show that the proteasome-generated spliced peptide pool accounts for one-third of the entire HLA class I immunopeptidome in terms of diversity and one-fourth in terms of abundance. This pool also represents a unique set of antigens, possessing particular and distinguishing features. We validated this observation using a range of complementary experimental and bioinformatics approaches, as well as multiple cell types. The widespread appearance and abundance of proteasome-catalyzed peptide splicing events has implications for immunobiology and autoimmunity theories and may provide a previously untapped source of epitopes for use in vaccines and cancer immunotherapy.


Asunto(s)
Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Línea Celular Tumoral , Biología Computacional , Humanos , Ligandos , Péptidos/inmunología , Péptidos/metabolismo , Empalme de Proteína
6.
Cell Rep ; 15(11): 2524-35, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27264188

RESUMEN

Cellular signaling processes can exhibit pronounced cell-to-cell variability in genetically identical cells. This affects how individual cells respond differentially to the same environmental stimulus. However, the origins of cell-to-cell variability in cellular signaling systems remain poorly understood. Here, we measure the dynamics of phosphorylated MEK and ERK across cell populations and quantify the levels of population heterogeneity over time using high-throughput image cytometry. We use a statistical modeling framework to show that extrinsic noise, particularly that from upstream MEK, is the dominant factor causing cell-to-cell variability in ERK phosphorylation, rather than stochasticity in the phosphorylation/dephosphorylation of ERK. We furthermore show that without extrinsic noise in the core module, variable (including noisy) signals would be faithfully reproduced downstream, but the within-module extrinsic variability distorts these signals and leads to a drastic reduction in the mutual information between incoming signal and ERK activity.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Animales , Modelos Biológicos , Modelos Estadísticos , Células PC12 , Fosforilación , Ratas , Factores de Tiempo
7.
Open Biol ; 6(6)2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27335321

RESUMEN

Haematopoiesis is the complex developmental process that maintains the turnover of all blood cell lineages. It critically depends on the correct functioning of rare, quiescent haematopoietic stem cells (HSCs) and more numerous, HSC-derived, highly proliferative and differentiating haematopoietic progenitor cells (HPCs). Infection is known to affect HSCs, with severe and chronic inflammatory stimuli leading to stem cell pool depletion, while acute, non-lethal infections exert transient and even potentiating effects. Both whether this paradigm applies to all infections and whether the HSC response is the dominant driver of the changes observed during stressed haematopoiesis remain open questions. We use a mouse model of malaria, based on natural, sporozoite-driven Plasmodium berghei infection, as an experimental platform to gain a global view of haematopoietic perturbations during infection progression. We observe coordinated responses by the most primitive HSCs and multiple HPCs, some starting before blood parasitaemia is detected. We show that, despite highly variable inter-host responses, primitive HSCs become highly proliferative, but mathematical modelling suggests that this alone is not sufficient to significantly impact the whole haematopoietic cascade. We observe that the dramatic expansion of Sca-1(+) progenitors results from combined proliferation of direct HSC progeny and phenotypic changes in downstream populations. We observe that the simultaneous perturbation of HSC/HPC population dynamics is coupled with early signs of anaemia onset. Our data uncover a complex relationship between Plasmodium and its host's haematopoiesis and raise the question whether the variable responses observed may affect the outcome of the infection itself and its long-term consequences on the host.


Asunto(s)
Hematopoyesis , Malaria/parasitología , Esporozoítos/patogenicidad , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/parasitología , Malaria/sangre , Ratones
8.
J Theor Biol ; 401: 43-53, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27130539

RESUMEN

Haematopoietic stem cell dynamics regulate healthy blood cell production and are disrupted during leukaemia. Competition models of cellular species help to elucidate stem cell dynamics in the bone marrow microenvironment (or niche), and to determine how these dynamics impact leukaemia progression. Here we develop two models that target acute myeloid leukaemia with particular focus on the mechanisms that control proliferation via feedback signalling. It is within regions of parameter space permissive of coexistence that the effects of competition are most subtle and the clinical outcome least certain. Steady state and linear stability analyses identify parameter regions that allow for coexistence to occur, and allow us to characterise behaviour near critical points. Where analytical expressions are no longer informative, we proceed statistically and sample parameter space over a coexistence region. We find that the rates of proliferation and differentiation of healthy progenitors exert key control over coexistence. We also show that inclusion of a regulatory feedback onto progenitor cells promotes healthy haematopoiesis at the expense of leukaemia, and that - somewhat paradoxically - within the coexistence region feedback increases the sensitivity of the system to dominance by one lineage over another.


Asunto(s)
Retroalimentación Fisiológica/fisiología , Células Madre Hematopoyéticas/citología , Leucemia Mieloide Aguda/patología , Modelos Biológicos , Células de la Médula Ósea , Diferenciación Celular , Linaje de la Célula/fisiología , Proliferación Celular , Humanos , Cinética , Nicho de Células Madre
9.
Stat Appl Genet Mol Biol ; 15(2): 107-22, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26992203

RESUMEN

The rapid development of high throughput experimental techniques has resulted in a growing diversity of genomic datasets being produced and requiring analysis. Therefore, it is increasingly being recognized that we can gain deeper understanding about underlying biology by combining the insights obtained from multiple, diverse datasets. Thus we propose a novel scalable computational approach to unsupervised data fusion. Our technique exploits network representations of the data to identify similarities among the datasets. We may work within the Bayesian formalism, using Bayesian nonparametric approaches to model each dataset; or (for fast, approximate, and massive scale data fusion) can naturally switch to more heuristic modeling techniques. An advantage of the proposed approach is that each dataset can initially be modeled independently (in parallel), before applying a fast post-processing step to perform data integration. This allows us to incorporate new experimental data in an online fashion, without having to rerun all of the analysis. We first demonstrate the applicability of our tool on artificial data, and then on examples from the literature, which include yeast cell cycle, breast cancer and sporadic inclusion body myositis datasets.


Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Genómica , Saccharomyces cerevisiae/genética , Algoritmos , Teorema de Bayes , Humanos , Modelos Teóricos
10.
Phys Biol ; 12(6): 066001, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26403334

RESUMEN

While the majority of cells in an organism are static and remain relatively immobile in their tissue, migrating cells occur commonly during developmental processes and are crucial for a functioning immune response. The mode of migration has been described in terms of various types of random walks. To understand the details of the migratory behaviour we rely on mathematical models and their calibration to experimental data. Here we propose an approximate Bayesian inference scheme to calibrate a class of random walk models characterized by a specific, parametric particle re-orientation mechanism to observed trajectory data. We elaborate the concept of transition matrices (TMs) to detect random walk patterns and determine a statistic to quantify these TM to make them applicable for inference schemes. We apply the developed pipeline to in vivo trajectory data of macrophages and neutrophils, extracted from zebrafish that had undergone tail transection. We find that macrophage and neutrophils exhibit very distinct biased persistent random walk patterns, where the strengths of the persistence and bias are spatio-temporally regulated. Furthermore, the movement of macrophages is far less persistent than that of neutrophils in response to wounding.


Asunto(s)
Movimiento Celular , Macrófagos/fisiología , Neutrófilos/fisiología , Pez Cebra/fisiología , Animales , Teorema de Bayes , Leucocitos/fisiología , Modelos Biológicos
11.
Eur J Immunol ; 44(12): 3508-21, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25231383

RESUMEN

Immunoproteasomes are considered to be optimised to process Ags and to alter the peptide repertoire by generating a qualitatively different set of MHC class I epitopes. Whether the immunoproteasome at the biochemical level, influence the quality rather than the quantity of the immuno-genic peptide pool is still unclear. Here, we quantified the cleavage-site usage by human standard- and immunoproteasomes, and proteasomes from immuno-subunit-deficient mice, as well as the peptides generated from model polypeptides. We show in this study that the different proteasome isoforms can exert significant quantitative differences in the cleavage-site usage and MHC class I restricted epitope production. However, independent of the proteasome isoform and substrates studied, no evidence was obtained for the abolishment of the specific cleavage-site usage, or for differences in the quality of the peptides generated. Thus, we conclude that the observed differences in MHC class I restricted Ag presentation between standard- and immunoproteasomes are due to quantitative differences in the proteasome-generated antigenic peptides.


Asunto(s)
Presentación de Antígeno/fisiología , Antígenos de Histocompatibilidad Clase I/inmunología , Péptidos/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Proteolisis , Animales , Línea Celular Transformada , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Isoenzimas/genética , Isoenzimas/inmunología , Ratones , Ratones Mutantes , Péptidos/genética , Complejo de la Endopetidasa Proteasomal/genética , Especificidad por Sustrato/genética , Especificidad por Sustrato/inmunología
12.
Proc Natl Acad Sci U S A ; 111(10): 3883-8, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24567385

RESUMEN

Chronic myeloid leukemia (CML) is a blood disease that disrupts normal function of the hematopoietic system. Despite the great progress made in terms of molecular therapies for CML, there remain large gaps in our understanding. By comparing mathematical models that describe CML progression and etiology we sought to identify those models that provide the best description of disease dynamics and their underlying mechanisms. Data for two clinical outcomes--disease remission or relapse--are considered, and we investigate these using Bayesian inference techniques throughout. We find that it is not possible to choose between the models based on fits to the data alone; however, by studying model predictions we can discard models that fail to take niche effects into account. More detailed analysis of the remaining models reveals mechanistic differences: for one model, leukemia stem cell dynamics determine the disease outcome; and for the other model disease progression is determined at the stage of progenitor cells, in particular by differences in progenitor death rates. This analysis also reveals distinct transient dynamics that will be experimentally accessible, but are currently at the limits of what is possible to measure. To resolve these differences we need to be able to probe the hematopoietic stem cell niche directly. Our analysis highlights the importance of further mapping of the bone marrow hematopoietic niche microenvironment as the "ecological" interactions between cells in this niche appear to be intricately linked to disease outcome.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Leucemia Mieloide/fisiopatología , Modelos Biológicos , Nicho de Células Madre/fisiología , Microambiente Tumoral/fisiología , Teorema de Bayes , Progresión de la Enfermedad , Humanos , Leucemia Mieloide/etiología
13.
Biomedicines ; 2(4): 384-402, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-28548077

RESUMEN

Signaling from the c-Met receptor tyrosine kinase is associated with progression and metastasis of epithelial tumors. c-Met, the receptor for hepatocyte growth factor, triggers epithelial-mesenchymal transition (EMT) of cultured cells, which is thought to drive migration of tumor cells and confer on them critical stem cell properties. Here, we employ mathematical modeling to better understand how EMT affects population dynamics in metastatic tumors. We find that without intervention, micrometastatic tumors reach a steady-state population. While the rates of proliferation, senescence and death only have subtle effects on the steady state, changes in the frequency of EMT dramatically alter population dynamics towards exponential growth. We also find that therapies targeting cell proliferation or cell death are markedly more successful when combined with one that prevents EMT, though such therapies do little when used alone. Stochastic modeling reveals the probability of tumor recurrence from small numbers of residual differentiated tumor cells. EMT events in metastatic tumors provide a plausible mechanism by which clinically detectable tumors can arise from dormant micrometastatic tumors. Modeling the dynamics of this process demonstrates the benefit of a treatment that eradicates tumor cells and reduces the rate of EMT simultaneously.

14.
J Comput Biol ; 20(12): 979-89, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23909374

RESUMEN

Recent studies have highlighted the importance of assessing the robustness of putative biomarkers identified from experimental data. This has given rise to the concept of stable biomarkers, which are ones that are consistently identified regardless of small perturbations to the data. Since stability is not by itself a useful objective, we present a number of strategies that combine assessments of stability and predictive performance in order to identify biomarkers that are both robust and diagnostically useful. Moreover, by wrapping these strategies around logistic regression classifiers regularized by the elastic net penalty, we are able to assess the effects of correlations between biomarkers upon their perceived stability. We use a synthetic example to illustrate the properties of our proposed strategies. In this example, we find that: (i) assessments of stability can help to reduce the number of false-positive biomarkers, although potentially at the cost of missing some true positives; (ii) combining assessments of stability with assessments of predictive performance can improve the true positive rate; and (iii) correlations between biomarkers can have adverse effects on their stability and hence must be carefully taken into account when undertaking biomarker discovery. We then apply our strategies in a proteomics context to identify a number of robust candidate biomarkers for the human disease HTLV1-associated myelopathy/tropical spastic paraparesis (HAM/TSP).


Asunto(s)
Algoritmos , Biomarcadores/sangre , Infecciones por HTLV-I/terapia , Paraparesia Espástica Tropical/diagnóstico , Simulación por Computador , Infecciones por HTLV-I/complicaciones , Virus Linfotrópico T Tipo 1 Humano/aislamiento & purificación , Humanos , Funciones de Verosimilitud , Paraparesia Espástica Tropical/sangre , Paraparesia Espástica Tropical/etiología , Valor Predictivo de las Pruebas
15.
J Chem Phys ; 138(17): 174101, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23656108

RESUMEN

Moment approximation methods are gaining increasing attention for their use in the approximation of the stochastic kinetics of chemical reaction systems. In this paper we derive a general moment expansion method for any type of propensities and which allows expansion up to any number of moments. For some chemical reaction systems, more than two moments are necessary to describe the dynamic properties of the system, which the linear noise approximation is unable to provide. Moreover, also for systems for which the mean does not have a strong dependence on higher order moments, moment approximation methods give information about higher order moments of the underlying probability distribution. We demonstrate the method using a dimerisation reaction, Michaelis-Menten kinetics and a model of an oscillating p53 system. We show that for the dimerisation reaction and Michaelis-Menten enzyme kinetics system higher order moments have limited influence on the estimation of the mean, while for the p53 system, the solution for the mean can require several moments to converge to the average obtained from many stochastic simulations. We also find that agreement between lower order moments does not guarantee that higher moments will agree. Compared to stochastic simulations, our approach is numerically highly efficient at capturing the behaviour of stochastic systems in terms of the average and higher moments, and we provide expressions for the computational cost for different system sizes and orders of approximation. We show how the moment expansion method can be employed to efficiently quantify parameter sensitivity. Finally we investigate the effects of using too few moments on parameter estimation, and provide guidance on how to estimate if the distribution can be accurately approximated using only a few moments.


Asunto(s)
Simulación por Computador , Modelos Químicos , Multimerización de Proteína , Proteína p53 Supresora de Tumor/química , Algoritmos , Cinética , Procesos Estocásticos
16.
J R Soc Interface ; 10(81): 20120968, 2013 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-23349436

RESUMEN

Haematopoietic stem cells (HSCs) are responsible for maintaining immune cells, red blood cells and platelets throughout life. HSCs must be located in their ecological niche (the bone marrow) to function correctly, that is, to regenerate themselves and their progeny; the latter eventually exit the bone marrow and enter circulation. We propose that cells with oncogenic potential-cancer/leukaemia stem cells (LSC)-and their progeny will also occupy this niche. Mathematical models, which describe the dynamics of HSCs, LSCs and their progeny allow investigation into the conditions necessary for defeating a malignant invasion of the niche. Two such models are developed and analysed here. To characterize their behaviour, we use an inferential framework that allows us to study regions in parameter space that give rise to desired behaviour together with an assessment of the robustness of the dynamics. Using this approach, we map out conditions under which HSCs can outcompete LSCs. In therapeutic applications, we clearly want to drive haematopoiesis into such regimes and the current analysis provide some guidance as to how we can identify new therapeutic targets. Our results suggest that maintaining a viable population of HSCs and their progenies in the niche may often already be nearly sufficient to eradicate LSCs from the system.


Asunto(s)
Células de la Médula Ósea/citología , Microambiente Celular , Células Madre Hematopoyéticas/citología , Leucemia/fisiopatología , Modelos Biológicos , Células Madre Neoplásicas/citología , Teorema de Bayes , Humanos
17.
Proc Natl Acad Sci U S A ; 109(43): 17579-84, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045701

RESUMEN

The 40-fold increase in childhood megakaryocyte-erythroid and B-cell leukemia in Down syndrome implicates trisomy 21 (T21) in perturbing fetal hematopoiesis. Here, we show that compared with primary disomic controls, primary T21 fetal liver (FL) hematopoietic stem cells (HSC) and megakaryocyte-erythroid progenitors are markedly increased, whereas granulocyte-macrophage progenitors are reduced. Commensurately, HSC and megakaryocyte-erythroid progenitors show higher clonogenicity, with increased megakaryocyte, megakaryocyte-erythroid, and replatable blast colonies. Biased megakaryocyte-erythroid-primed gene expression was detected as early as the HSC compartment. In lymphopoiesis, T21 FL lymphoid-primed multipotential progenitors and early lymphoid progenitor numbers are maintained, but there was a 10-fold reduction in committed PreproB-lymphoid progenitors and the functional B-cell potential of HSC and early lymphoid progenitor is severely impaired, in tandem with reduced early lymphoid gene expression. The same pattern was seen in all T21 FL samples and no samples had GATA1 mutations. Therefore, T21 itself causes multiple distinct defects in FL myelo- and lymphopoiesis.


Asunto(s)
Síndrome de Down , Células Madre Hematopoyéticas/patología , Hígado/embriología , Diferenciación Celular , Linaje de la Célula , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Hígado/patología
18.
Mol Biosyst ; 8(7): 1921-9, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22555461

RESUMEN

Ever since reversible protein phosphorylation was discovered, it has been clear that it plays a key role in the regulation of cellular processes. Proteins often undergo double phosphorylation, which can occur through two possible mechanisms: distributive or processive. Which phosphorylation mechanism is chosen for a particular cellular regulation bears biological significance, and it is therefore in our interest to understand these mechanisms. In this paper we study dynamics of the MEK/ERK phosphorylation. We employ a model selection algorithm based on approximate Bayesian computation to elucidate phosphorylation dynamics from quantitative time course data obtained from PC12 cells in vivo. The algorithm infers the posterior distribution over four proposed models for phosphorylation and dephosphorylation dynamics, and this distribution indicates the amount of support given to each model. We evaluate the robustness of our inferential framework by systematically exploring different ways of parameterizing the models and for different prior specifications. The models with the highest inferred posterior probability are the two models employing distributive dephosphorylation, whereas we are unable to choose decisively between the processive and distributive phosphorylation mechanisms.


Asunto(s)
Teorema de Bayes , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteómica , Algoritmos , Animales , Línea Celular Tumoral , Modelos Biológicos , Células PC12 , Fosforilación , Ratas
19.
Retrovirology ; 8: 81, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21992623

RESUMEN

BACKGROUND: Human T lymphotropic virus Type 1 (HTLV-1) causes a chronic inflammatory disease of the central nervous system known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM) which resembles chronic spinal forms of multiple sclerosis (MS). The pathogenesis of HAM remains uncertain. To aid in the differential diagnosis of HAM and to identify pathogenetic mechanisms, we analysed the plasma proteome in asymptomatic HTLV-1 carriers (ACs), patients with HAM, uninfected controls, and patients with MS. We used surface-enhanced laser desorption-ionization (SELDI) mass spectrometry to analyse the plasma proteome in 68 HTLV-1-infected individuals (in two non-overlapping sets, each comprising 17 patients with HAM and 17 ACs), 16 uninfected controls, and 11 patients with secondary progressive MS. Candidate biomarkers were identified by tandem Q-TOF mass spectrometry. RESULTS: The concentrations of three plasma proteins--high [ß2-microglobulin], high [Calgranulin B], and low [apolipoprotein A2]--were specifically associated with HAM, independently of proviral load. The plasma [ß2-microglobulin] was positively correlated with disease severity. CONCLUSIONS: The results indicate that monocytes are activated by contact with activated endothelium in HAM. Using ß2-microglobulin and Calgranulin B alone we derive a diagnostic algorithm that correctly classified the disease status (presence or absence of HAM) in 81% of HTLV-1-infected subjects in the cohort.


Asunto(s)
Infecciones por HTLV-I/sangre , Virus Linfotrópico T Tipo 1 Humano/fisiología , Paraparesia Espástica Tropical/sangre , Plasma/química , Proteoma/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Portador Sano/metabolismo , Portador Sano/virología , Estudios de Casos y Controles , Estudios de Cohortes , Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Paraparesia Espástica Tropical/virología , Plasma/metabolismo , Proteoma/química , Proteoma/genética , Enfermedades de la Médula Espinal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA