Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Intervalo de año de publicación
1.
Environ Res ; 255: 119187, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38777295

RESUMEN

The issue of combined pollution in oligotrophic water has garnered increasing attention in recent years. To enhance the pollutant removal efficiency in oligotrophic water, the system containing Zoogloea sp. FY6 was constructed using polyester fiber wrapped sugarcane biochar and construction waste iron (PWSI), and the denitrification test of simulated water and actual oligotrophic water was carried out for 35 days. The experimental findings from the systems indicated that the removal efficiencies of nitrate (NO3--N), total nitrogen (TN), chemical oxygen demand (COD), and total phosphorus (TP) in simulated water were 88.61%, 85.23%, 94.28%, and 98.90%, respectively. The removal efficiencies of actual oligotrophic water were 83.06%, 81.39%, 81.66%, and 97.82%, respectively. Furthermore, the high-throughput sequencing data demonstrated that strain FY6 was successfully loaded onto the biological carrier. According to functional gene predictions derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the introduction of PWSI enhanced intracellular iron cycling and nitrogen metabolism.


Asunto(s)
Carbón Orgánico , Hierro , Nitrógeno , Fósforo , Contaminantes Químicos del Agua , Fósforo/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Carbón Orgánico/química , Hierro/química , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos
2.
J Intensive Med ; 4(2): 231-239, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38681790

RESUMEN

Background: Acute kidney injury (AKI) is a primary feature of renal complications in patients with sepsis. MicroRNA (miRNA/miR)-30a is an essential regulator of cardiovascular diseases, tumors, phagocytosis, and other physical processes, but whether it participates in sepsis-induced AKI (sepsis-AKI) is unknown. We aimed to elucidate the functions and molecular mechanism underlying miR-30a activity in sepsis-AKI. Methods: The classical cecal ligation and puncture (CLP) method and lipopolysaccharide (LPS)-induced Human Kidney 2 (HK-2) cells were used to establish in vivo and in vitro sepsis-AKI models. Specific pathogen-free and mature male Sprague-Dawley (SD) rats, aged 6-8 weeks (weight 200-250 g), were randomly divided into five-time phase subgroups. Fluid resuscitation with 30 mL/kg 37 °C saline was administered after the operation, without antibiotics. Formalin-fixed, paraffin-embedded kidney sections were stained with hematoxylin and eosin. SD rat kidney tissue samples were collected for analysis by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. HK-2 cells were transfected with hsa-miR-30a-3p mimics or inhibitors, and compared with untreated normal controls. RNA, protein, and cell viability were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot, and cell counting kit-8 methods. A Dual-Luciferase Assay Kit (Promega) was used to measure luciferase activity 48 h after transfection with miR-30a-3p mimics. Results: Expression levels of miR-30a-3p and miR-30a-5p in renal tissues of the sepsis group were significantly reduced at 12 h and 24 h (P <0.05). Tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were significantly increased in renal tissue 3 h after the operation in rats (P <0.05), and gradually decreased 6 h, 12 h, and 24 h after CLP. Levels of miR-30a-5p and miR-30a-3p were significantly down-regulated at 3 h after LPS treatment (P <0.05), and gradually decreased in HK-2 cells. One hour after LPS (10 µg/mL) treatment, TNF-α and IL-1ß levels in HK-2 cells were significantly up-regulated (P < 0.05), and they were markedly down-regulated after 3 h (P <0.05). IL-6 expression levels began to rise after LPS treatment of cells, peaked at 6 h (P <0.05), and then decreased to the initial level within a few hours. Stimulation with 10 µg/mL LPS promoted HK-2 cells proliferation, which was inhibited after miR-30a-3p-mimic transfection. Bioinformatics prediction identified 37 potential miR-30a-3p target genes, including transcriptional enhanced associate domain 1 (TEAD1). After transfection of HK-2 cells with miR-30a-3p mimics and miR-30a-3p inhibitor, TEAD1 transcript was significantly up- and down-regulated, respectively (both P <0.05). After LPS treatment (24 h), expression of TEAD1 in the inhibitors group was significantly increased (P <0.01), while that in the mimics group was significantly suppressed (P <0.01). In the dual luciferase reporter experiment, miR-30a-3p overexpression decreased fluorescence intensity (P <0.01) from TEAD1-wt-containing plasmids, but did not influence fluorescence intensity from TEAD1-muta-containing plasmids. LPS may promote HK-2 cells proliferation through the miR-30a-3p/TEAD1 pathway. Conclusion: In a background of expression of inflammatory factors, including TNF-α, IL-1ß, and IL-6, which were transiently increased in the sepsis-AKI model, miR-30a was down-regulated. Down-regulated miR-30a-3p may promote cell proliferation by targeting TEAD1 in LPS-induced HK-2 cells, demonstrating its potential as a biomarker for early sepsis-AKI diagnosis.

3.
J Environ Manage ; 358: 120912, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636417

RESUMEN

With the enhancement of environmental governance regulations, the discharge requirements for reverse osmosis wastewater have become increasingly stringent. This study proposes an innovative approach utilizing heterotrophic nitrification and aerobic denitrification (HNAD)-based biomineralization technology, combined with coconut palm silk loaded biochar, to offer a novel solution for resource-efficient and eco-friendly treatment of reverse osmosis wastewater. Zobellella denitrificans sp. LX16 were loaded onto modified coir silk and showed removal efficiencies of up to 97.38, 94.58, 86.24, and 100% for NH4+-N (65 mg L-1), COD (900 mg L-1), Ca2+ (180 mg L-1), and Cd2+ (25 mg L-1). Analysis of the metabolites of microorganisms reveals that coconut palm silk loaded with deciduous biochar (BCPS) not only exerts a protective effect on microorganisms, but also enhances their growth, metabolism, and electron transfer capabilities. Characterization of precipitation phenomena elucidated the mechanism of Cd2+ removal via ion exchange, precipitation, and adsorption. Employing high-throughput and KEGG functional analyses has confirmed the biota environmental response strategies and the identification of key genes like HNAD.


Asunto(s)
Amoníaco , Biopelículas , Reactores Biológicos , Cadmio , Calcio , Nitrógeno , Cadmio/metabolismo , Calcio/metabolismo , Amoníaco/metabolismo , Nitrógeno/metabolismo , Aguas Residuales/química , Desnitrificación , Carbón Orgánico/química , Eliminación de Residuos Líquidos/métodos
4.
World J Emerg Med ; 15(1): 70-72, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38188551
5.
Chemosphere ; 350: 141156, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211799

RESUMEN

The co-existence of heavy metals and nitrate (NO3--N) pollutants in wastewater has been a persistent global concern for a long time. A strain LYF26, which can remove NO3--N, calcium (Ca(II)), and cadmium (Cd(II)) simultaneously, was isolated to explore the properties and mechanisms of synergistic contaminants removal. Different conditions (Cd(II) and Ca(II) concentrations and pH) were optimized by Zero-, Half-, and First-order kinetic analyses to explore the environmental parameters for the optimal effect of strain LYF26. Results of the kinetic analyses revealed that the optimal culture conditions for strain LYF26 were pH of 6.5, Cd(II) and Ca(II) concentrations of 3.00 and 180.00 mg L-1, accompanied by Ca(II), Cd(II), and NO3--N efficiencies of 53.10%, 90.03%, and 91.45%, respectively. The removal mechanisms of Cd(II) using strain LYF26 as a nucleation template were identified as biomineralization, lattice substitution, and co-precipitation. The differences and changes of dissolved organic matter during metabolism were analyzed and the results demonstrated that besides the involvement of extracellular polymeric substances in the precipitation of Cd(II) and Ca(II), the high content of humic acid-like species revealed a remarkable contribution to the denitrification process. This study is hopeful to contribute a theory for further developing microbially induced calcium precipitation used to treat complex polluted wastewater.


Asunto(s)
Cadmio , Nitratos , Cadmio/metabolismo , Nitratos/metabolismo , Calcio , Cinética , Pseudomonas/metabolismo , Aguas Residuales , Desnitrificación , Calcio de la Dieta
6.
J Neurointerv Surg ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228387

RESUMEN

BACKGROUND: Patients with acute basilar artery occlusion (ABAO) who undergo combined standard medical treatment (SMT) and endovascular thrombectomy (EVT) may still have unsatisfactory outcomes. This study was conducted to identify the factors that may impact their outcomes. METHODS: We retrospectively reviewed the data of all patients with ABAO combined with SMT and EVT in the endovascular treatment for acute basilar artery occlusion (ATTENTION) trial. A good outcome is defined as a modified Rankin Scale (mRS) score of 0-3, a poor outcome as mRS score of 4-6, and mortality as death at 90-day follow-up. The study analyzed various factors influencing the patients' good outcomes and mortality. RESULTS: The study included 221 patients (148 men and 73 women). Among these patients, 45.7% achieved an mRS score of 0-3, while the overall mortality rate was 37.1% (82/221). A good outcome was significantly associated with younger age (adjusted OR 0.96; 95% CI 0.93 to 0.99; P=0.019), a baseline posterior circulation Alberta Stroke Program Early CT Score (pc-ASPECTS) of 8-10 (adjusted OR 2.34; 95% CI 1.07 to 5.12; P=0.034), and post-procedure pc-ASPECTS of 8-10 (adjusted OR 1.40; 95% CI 1.07 to 1.84; P=0.013). Additionally, time from puncture to reperfusion (adjusted OR 2.02; 95% CI 1.2 to 3.41; P=0.008) and intracranial hemorrhage (adjusted OR 3.59; 95% CI 1.09 to 11.8; P=0.035) were associated with 90-day mortality. CONCLUSIONS: Younger age, baseline pc-ASPECTS of 8-10, and higher post-procedure pc-ASPECTS could effectively predict good outcomes for patients with ABAO undergoing EVT. Additionally, a prolonged time from puncture to reperfusion and intracranial hemorrhage can independently predict mortality. TRIAL REGISTRATION NUMBER: NCT04751708.

7.
Environ Res ; 246: 118159, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218519

RESUMEN

Zoogloea sp. MFQ7 achieved excellent denitrification of 91.71% at ferrous to manganous ratio (Fe/Mn) of 3:7, pH of 6.5, nitrate concentration of 25 mg L-1 and carbon to nitrogen ratio of 1.5. As the Fe/Mn ratio increasd, the efficiency of nitrate removal gradually decreased, indicating that strain MFQ7 had a higher affinity for Mn2+ than Fe2+. In situ generated biogenic Fe-Mn oxides (BFMO) contained many iron-manganese oxides (MnO2, Mn3O4, FeO(OH), Fe2O3, and Fe3O4) as well as reactive functional groups, which play an significant part in tetracycline (TC) and cadmium (Cd2+) adsorption. The adsorption of TC and Cd2+ by BFMO can better fit the pseudo-second-order and Langmuir models. In addition, multiple characterization results of before and after adsorption indicated that the removal mechanism of BFMO on TC and Cd2+ was probably surface complexation adsorption and redox reactions.


Asunto(s)
Cadmio , Compuestos Férricos , Óxidos , Óxidos/química , Nitratos , Compuestos de Manganeso/química , Desnitrificación , Tetraciclina , Antibacterianos , Compuestos Orgánicos , Adsorción
8.
Bioresour Technol ; 394: 130215, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122995

RESUMEN

The treatment of reverse osmosis concentrate generated from urban industrial sewage for resource recovery has been hot. In this research, a biofilm reactor was constructed by combining sycamore deciduous biochar, shell powder, and polyurethane sponge loaded with Zobellella denitrificans sp. LX16. For ammonia nitrogen (NH4+-N), calcium (Ca2+), chemical oxygen demand (COD), cadmium (Cd2+), and tetracycline (TC), the removal efficiencies were 98.69 %, 83.95 %, 97.26 %, 98.34 %, and 69.12 % at a hydraulic retention time (HRT) of 4 h, pH of 7.0, and influent salinity, Ca2+, and TC concentrations of 1.0, 180.0, and 3.0 mg/L, respectively. The biofilm reactor packing has a three-dimensional structure to ensure good loading of microorganisms while promoting electron transfer and metabolic activity of microorganisms and increasing the pollutant tolerance and removal efficiency. The reactor provides a practical reference for the sedimentation of reverse osmosis concentrate to remove Cd2+ and TC by microbial induced calcium precipitation (MICP).


Asunto(s)
Carbón Orgánico , Compuestos Heterocíclicos , Aguas Residuales , Cadmio , Eliminación de Residuos Líquidos/métodos , Calcio , Poliuretanos , Polvos , Desnitrificación , Tetraciclina , Antibacterianos , Biopelículas , Ósmosis , Reactores Biológicos , Nitrógeno/metabolismo , Nitrificación
9.
Environ Res ; 238(Pt 1): 117139, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716392

RESUMEN

Based on the current situation of complex pollution caused in surface water by oligotrophic condition and heavy metal release from river and lake bottom sediments. This study aimed to achieve the simultaneous removal of nitrate, phosphorus, Zn2+ and Pb2+ through microbial approach. At nitrate concentration of 4.82 mg L-1, carbon to nitrogen ratio of 1.5, pH of 6.0, and Fe2+ concentration of 5.0 mg L-1, the nitrate removal efficiency of Zoogloea sp. FY-6 reached 95.17%. The addition of pollutants under these conditions resulted in 88.76% removal of total phosphorus at 18 h, and 85.46 and 78.59% removal of Zn2+ and Pb2+ respectively, and there was competition for adsorption between Zn2+ and Pb2+. Extracellular polymers and fluorescence excitation-emission substrates confirmed that Fe2+ reduced heavy metal toxicity through promoting bacterial production of secretions and promotes denitrification as a carbon source. Meanwhile, contaminant removal curves and Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy demonstrated the synchronous removal of Zn2+ and Pb2+ mainly through biological action and the formation of nanoscale iron oxides. Biological-iron precipitation also provided adsorption sites for phosphorus. This research provides the theoretical foundation for applying microorganisms to restore oligotrophic source water (rivers and lakes) containing complex pollutants.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Hierro/química , Zinc , Plomo , Fósforo , Nitratos , Desnitrificación , Ecosistema , Metales Pesados/química , Carbono , Agua , Nitrógeno
10.
Environ Res ; 231(Pt 3): 116307, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37268205

RESUMEN

The pollution problem of oxytetracycline (OTC) from wastewater becomes more serious, so an efficient, economical, and green adsorption material is urgently explored. In this study, the multilayer porous biochar (OBC) was prepared by coupling carbon nanotubes with iron oxide nanoparticles synthesized by Aquabacterium sp. XL4 to modify corncobs under medium temperature (600 °C) conditions. The adsorption capacity of OBC could reach 72.59 mg g-1 after preparation and operation parameters were optimized. In addition, various adsorption models suggested that OTC removal resulted from the combined effect of chemisorption, multilayer interaction, and disordered diffusion. Meanwhile, the OBC was fully characterized and exhibited a large specific surface area (237.51 m2 g-1), abundant functional groups, stable crystal structure, high graphitization, and mild magnetic properties (0.8 emu g-1). The OTC removal mechanisms mainly included electrostatic interactions, ligand exchange, π-π bonding reactions, hydrogen bonds, and complexation. pH and coexistence substance experiments revealed that the OBC possesses a wide pH adaptation range and excellent anti-interference ability. Finally, the safety and reusability of OBC were confirmed by repeated experiments. In summary, OBC as a biosynthetic material shows considerable potential for application in the field of purifying new pollution from wastewater.


Asunto(s)
Nanotubos de Carbono , Oxitetraciclina , Contaminantes Químicos del Agua , Oxitetraciclina/química , Aguas Residuales , Adsorción , Nanopartículas Magnéticas de Óxido de Hierro , Contaminantes Químicos del Agua/análisis , Cinética
11.
Bioresour Technol ; 382: 129183, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37210034

RESUMEN

The iron reduction coupled with ammonia oxidation process (Feammox) is a biological reaction process associated with the nitrogen cycle that has been discovered in recent years. In this study, the iron-reducing bacterium Klebsiella sp. FC61 was attached by synthesizing nano-loadings of iron tetroxide (nFe3O4) onto rice husk biochar (RBC), and the RBC-nFe3O4 was used as an electron shuttle to participate in the biological iron reduction process of soluble and insoluble Fe3+ to improve the ammonia oxidation efficiency to 81.82%. This acceleration of electron transfer increased the carbon consumption rate and further tuned up the COD removal efficiency to 98.00%. The Feammox could be coupled with iron denitrification for internal nitrogen/iron cycling to reduce the accumulation of nitrate by-products and achieve the recycling of iron. In addition, pollutants such as Ni2+, ciprofloxacin, and formed chelates could be removed by pore adsorption and π-π interactions using bio-iron precipitates produced by iron-reducing bacteria.


Asunto(s)
Compuestos de Amonio , Oryza , Amoníaco , Klebsiella , Ciprofloxacina/farmacología , Oxidación-Reducción , Nitrógeno , Bacterias , Desnitrificación
12.
Environ Res ; 224: 115476, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36805352

RESUMEN

Composite pollutants are prevalent in wastewater, whereas, the simultaneous accomplishment of efficient nitrogen removal and resources recovery remains a challenge. In this study, a bioreactor was constructed to contain Pseudomonas sp. Y1 using polyester fiber wrapped with shell powder and iron carbon spheres, achieving ammonia nitrogen (NH4+-N) removal, phosphate (PO43--P) recovery, and nickel (Ni2+) immobilization. The optimal performance of bioreactor was average removal efficiencies of NH4+-N, PO43--P, calcium (Ca2+), and Ni2+ as 82.42, 96.67, 76.13, and 98.29% at a hydraulic retention time (HRT) of 6 h, pH of 7.0, and influent Ca2+ and Ni2+ concentrations of 100.0 and 3.0 mg L-1, respectively. The bioreactor could remove PO43--P, Ca2+, and Ni2+ by biomineralization, co-precipitation, adsorption, and lattice substitution. Moreover, microbial community analysis suggested that Pseudomonas was the predominant genus and had possessed tolerance to Ni2+ toxicity in wastewater. This study presented an effective method to synchronously remove NH4+-N, recover PO43--P, and fix heavy metals through microbially induced carbonate precipitation (MICP) and heterotrophic nitrification and aerobic denitrification (HNAD) technology.


Asunto(s)
Amoníaco , Aguas Residuales , Fosfatos , Desnitrificación , Níquel , Polvos , Hierro , Carbono , Nitrógeno/metabolismo , Reactores Biológicos , Aerobiosis
13.
Environ Res ; 219: 115163, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36580984

RESUMEN

In recent years, under the condition of lack of carbon source, the presence of composite micro-pollutants make the removal of nitrate seriously damaged, and to find a suitable way to solve this problem is imminent. A fixed-biofilm carrier modified by mixing sponge iron (SI) and kapok fiber (KF) combined with strain Zoogloea sp. FY6 was constructed in this study to get a fixed-biofilm reactor with merit denitrification performance. By adjusting the operation parameters, it can be concluded that when the carbon to nitrogen (C/N) ratio was 1.5, the hydraulic retention time (HRT) was 6.0 h, and the pH was 6.0, the nitrate removal efficiency (NRE) of the fixed-biofilm reactor was up to 95.4% (2.95 mg L-1 h-1). In addition, the fixed-biofilm reactor constructed in this study can remove lead (Pb2+) and tetracycline (TC) excellently in the presence of SI and Zoogloea sp. FY6, and the denitrification performance can still maintain a high level under the influence of different concentrations of Pb2+ and TC. Furthermore, the addition of SI not only removes the compound pollutants, but also protects the toxicity of the pollutant inflow in the bioreactor, and the metabolic process of microorganisms in the bioreactor also removes some of the compound pollutants. The high-throughput data showed the abundance of strain Zoogloea sp. FY6 was still the highest value under the influence of various pollutants, and the metagenomic prediction showed that the fixed-biofilm reactor had perfect denitrification process and iron redox cycle benefits. This study provides a valuable reference for sustainable utilization of natural biological resources and reduction of material costs in wastewater treatment plants (WWTPs).


Asunto(s)
Hierro , Nitratos , Plomo , Tetraciclina , Antibacterianos , Biopelículas , Carbono , Biota , Reactores Biológicos , Nitrógeno
14.
Chemosphere ; 312(Pt 1): 137255, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36402354

RESUMEN

The coexistence of multiple pollutants and lack of carbon sources are challenges for the biological treatment of wastewater. To achieve simultaneous removal of nitrate (NO3--N) and cadmium (Cd2+) at low carbon to nitrogen (C/N) ratios, 2-hydroxy-1,4-naphthoquinone (HNQ) was selected from three redox mediators as an accelerator for denitrification of heterotrophic strain Pseudomonas stutzeri sp. GF2 and autotrophic strain Zoogloea sp. FY6. Then, halloysite nanotubes immobilized with 2-hydroxy-1,4-naphthoquinone (HNTs-HNQ) were prepared and a bioreactor was constructed with immobilized redox mediator granules (IRMG) as the carrier, which was immobilized with HNTs-HNQ and inoculated with the two strains. The immobilized HNQ and the inoculated strains jointly improved the removal ability of NO3--N and Cd2+ and the removal efficiency of NO3--N (25.0 mg L-1) and Cd2+ (5.0 mg L-1) were 92.81% and 93.94% at C/N = 1.5 and hydraulic retention time (HRT) = 4 h. The Cd2+ was removed by adsorption of iron oxides (FeO(OH) and Fe3O4) and IRMG. The electron transport system activity (ETSA) of bacteria was improved and the composition of dissolved organic matter in the effluent was not affected by HNQ. The HNQ promoted the production of FeO(OH) and up-regulated the proportion of Zoogloea (54.75% in the microbial community), indicating that Zoogloea sp. FY6 was dominant in the microbial community. In addition, HNQ influenced the metabolic pathways and improved the relative abundance of some genes involved in nitrogen metabolism and the iron redox cycle.


Asunto(s)
Nitratos , Nitrógeno , Desnitrificación , Cadmio , Carbono , Reactores Biológicos , Oxidación-Reducción , Óxidos de Nitrógeno , Hierro
15.
Bioresour Technol ; 369: 128433, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36473584

RESUMEN

Optimization of nitrate removal rate under low carbon-to-nitrogen ratio has always been one of the research hotspots. Biofilm reactor based on functional carrier and using interspecific synergic effect of strains provides an insight. In this study, iron-loaded corn cob was used as a functional carrier that can contribute to the cellulose degradation, iron cycling, and collaborative denitrification process of microorganisms. During biofilm reactor operation, the maximum nitrate removal efficiency was 99.30% and could reach 81.73% at no carbon source. Dissolved organic carbon and carrier characterization showed that strain ZY7 promoted the release of carbon source. The crystallinity of cellulose I and II in carrier of experimental group increased by 31.26% and decreased by 21.83%, respectively, in comparison to the control group. Microbial community showed the synergistic effect among different strains. The vitality and metabolic activity of the target microorganisms in bioreactor were increased through interspecific bacterial cooperation.


Asunto(s)
Microbiota , Nitratos , Nitratos/metabolismo , Zea mays/metabolismo , Desnitrificación , Celulosa , Hierro , Biopelículas , Reactores Biológicos/microbiología , Nitrógeno/metabolismo
16.
Bioresour Technol ; 367: 128282, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36368483

RESUMEN

The application of bio-manganese (Mn) redox cycling for continuous removal of contaminants provides promise for addressing coexisting contaminants in groundwater, however, the feasibility of constructing Mn redox cycling system (MCS) through community assembly remains to be elucidated. In this study, Mn-reducing strain MFG10 and Mn-oxidizing strain MFQ7 synergistically removed 94.67 % of 17ß-estradiol (E2) within 12 h. Analysis of potential variations in Mn oxides suggested that MCS accelerated the production of reactive oxygen species (ROS) and Mn(III), which interacted to promote E2 removal. After continuous operation of the Mn ore-based immobilized bioreactor for 270 days, the experimental group (EG) achieved average removal efficiencies of 89.63 % and 97.57 % for NO3--N and E2, respectively. High-throughput sequencing results revealed complex symbiotic relationships in EG. Community assembly significantly enhanced the metabolic and physiological activity of the bioreactor, which promoting the expression of core functions including nitrogen metabolism, Mn cycling and organic matter resistance.


Asunto(s)
Manganeso , Nitratos , Reactores Biológicos , Oxidación-Reducción , Estradiol , Óxidos de Nitrógeno
17.
Water Res ; 225: 119196, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36206681

RESUMEN

Reasonable and efficient removal of mixed pollutants (nitrate and heavy metals) in industrial wastewater under heavy metal pollution has attracted more attention in recent years. The target strain Aquabacterium sp. XL4 was immobilized with different iron ore wastes (IOW) using polyvinyl alcohol (PVA) to construct four immobilized bioreactors. The results showed that when the ratio of C/N was 1.5 and the hydraulic retention time (HRT) was 8.0h, the denitrification performance of the bioreactor was the best, and the maximum denitrification efficiency of the bioreactor with sponge iron (SI) as the iron source was 97.19% (2.42mg L-1 h-1). Furthermore, by adjusting the concentration of Cu2+ and Pb2+, the stress behavior of the bioreactor to heavy metals under the influence of each IOW was investigated. The bioreactor has stronger tolerance and removal efficiency to Pb2+ and Cu2+ in the presence of pellets ore (PO) and refined iron ore (RO), respectively. Moreover, the high-throughput data showed that Aquabacterium accounted for a high proportion in the immobilized bioreactor, and the prediction of functional genes based on the KEGG database showed that the addition of IOW was closely related to the acceleration of nitrate transformation and the inflow and outflow of iron in cells.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Desnitrificación , Aguas Residuales , Nitratos , Cobre , Plomo , Alcohol Polivinílico , Hidrogeles , Nitrógeno , Reactores Biológicos/microbiología , Hierro , Óxidos de Nitrógeno
18.
Bioresour Technol ; 362: 127875, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36049713

RESUMEN

This study aims to develop a functional biocarrier with hydrophilic spongy biochar crosslinked with starch and polyvinyl alcohol (WSB/starch-PVA) for simultaneous removal of NO3--N, total phosphorus (TP) and Cd2+ in low carbon wastewater. Results showed that the WSB/starch-PVA bioreactor achieved the maximum NO3--N removal efficiency in subphase 1.2 with 98.07 % (3.64 mg L-1h-1) versus control (75.30 %, 2.81 mg L-1h-1), and removed 54.84 % and 73.97 % of TP and Cd2+. Material characterization suggested that functional groups (related to C, N and O) on biocarrier and biofilm, and biogenic co-precipitation facilitated TP and Cd2+ removal. The WSB made the biocarrier pores larger and regular, and decreased fluorescent soluble microbial products. The predicted metagenome further suggested that central citrate cycle, oxidative phosphorylation of bio-community, and NO3--N removal were enhanced. Functions for microbial induced co-precipitation, Cd2+ transport/efflux, antioxidants, and enhanced biofilm formation favored the NO3--N/TP removal and Cd2+ detoxification.


Asunto(s)
Fósforo , Aguas Residuales , Reactores Biológicos , Cadmio , Carbono , Carbón Orgánico , Desnitrificación , Nitratos , Nitrógeno , Óxidos de Nitrógeno , Alcohol Polivinílico , Almidón
19.
Bioresour Technol ; 360: 127569, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35788391

RESUMEN

Based on the prevalence of combined antibiotics and heavy metals contamination in the aquatic environment, this study utilized a microbial approach to achieve simultaneous removal of nitrate (NO3--N), tetracycline (TTC), and Pb(II). Zoogloea sp. FY6 could achieve an optimal NO3--N removal efficiency of 91.5% under C/N ratio of 2.0, at a pH of 6.3, and Fe(II) concentration of 20.23 mg L-1 based on response surface methodology. Additionally, strain FY6 was further found to achieve 89.9 and 81.7% removal of TTC and Pb(II) at 6 h under the optimal conditions. Finally, the results of Fluorescence excitation-emission matrix, X-ray diffraction, Fourier transform infrared spectrometer, and X-ray photoelectron spectroscopy further proved that the biologically formed nanoscale iron oxides and biological action jointly led to the removal of TTC and Pb(II). This study provided a theoretical basis for the application of microbially driven process to remove multi-pollutants in micro-polluted water bodies.


Asunto(s)
Contaminantes Químicos del Agua , Zoogloea , Adsorción , Antibacterianos , Hierro/química , Plomo , Nitratos , Óxidos de Nitrógeno , Oxidación-Reducción , Tetraciclina/farmacología , Contaminantes Químicos del Agua/química
20.
Bioresour Technol ; 355: 127259, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35550924

RESUMEN

The coexistence of nitrate (NO3--N) and heavy metals in the aquatic environment causes harm to both the aquatic ecosystem and human health. Here, fungal-sponge composite carriers (FSC) were assembled and immobilized with strain WZ39 in a bioreactor to remove NO3--N, Ca2+, and Cd2+. Stable bioreactor performance under heavy metal pressure was achieved. The highest removal efficiencies of NO3--N, Ca2+, and Cd2+ reached 100, 71.81, and 92.50%, respectively. Bacteria and precipitates were found in fungal mycelium and sponge. The precipitates composed of Ca3.9(Ca4.7Cd0.7)(PO4)6(OH)1.8, CaCO3, and CdCO3. Fluorescence excitation-emission matrix (EEM) and flow cytometric (FCM) analysis indicated bacteria in FSC exhibited a strong metabolic activity and high percentage of intact cells under heavy metal stress. High-throughput sequencing results showed Pseudomonas sp. WZ39 played a major role in the bioreactor. The potential functions associated with metabolism, heavy metal transfer, and biofilm formation had high relative abundance in the bioreactor.


Asunto(s)
Metales Pesados , Nitratos , Bacterias/genética , Biomineralización , Reactores Biológicos , Cadmio , Calcio , Desnitrificación , Ecosistema , Humanos , Óxidos de Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA