Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Metab ; 6(4): 741-763, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38664583

RESUMEN

Due to the rise in overnutrition, the incidence of obesity-induced hepatocellular carcinoma (HCC) will continue to escalate; however, our understanding of the obesity to HCC developmental axis is limited. We constructed a single-cell atlas to interrogate the dynamic transcriptomic changes during hepatocarcinogenesis in mice. Here we identify fatty acid binding protein 5 (FABP5) as a driver of obesity-induced HCC. Analysis of transformed cells reveals that FABP5 inhibition and silencing predispose cancer cells to lipid peroxidation and ferroptosis-induced cell death. Pharmacological inhibition and genetic ablation of FABP5 ameliorates the HCC burden in male mice, corresponding to enhanced ferroptosis in the tumour. Moreover, FABP5 inhibition induces a pro-inflammatory tumour microenvironment characterized by tumour-associated macrophages with increased expression of the co-stimulatory molecules CD80 and CD86 and increased CD8+ T cell activation. Our work unravels the dual functional role of FABP5 in diet-induced HCC, inducing the transformation of hepatocytes and an immunosuppressive phenotype of tumour-associated macrophages and illustrates FABP5 inhibition as a potential therapeutic approach.


Asunto(s)
Carcinoma Hepatocelular , Proteínas de Unión a Ácidos Grasos , Ferroptosis , Neoplasias Hepáticas , Proteínas de Neoplasias , Obesidad , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/etiología , Animales , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Ratones , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/etiología , Obesidad/complicaciones , Obesidad/metabolismo , Masculino , Microambiente Tumoral/inmunología , Humanos , Ratones Endogámicos C57BL , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología
2.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014178

RESUMEN

Obesity-linked fatty liver is a significant risk factor for hepatocellular carcinoma (HCC)1,2; however, the molecular mechanisms underlying the transition from non-alcoholic fatty liver disease (NAFLD) to HCC remains unclear. The present study explores the role of the endoplasmic reticulum (ER)-associated protein NgBR, an essential component of the cis-prenyltransferases (cis-PTase) enzyme3, in chronic liver disease. Here we show that genetic depletion of NgBR in hepatocytes of mice (N-LKO) intensifies triacylglycerol (TAG) accumulation, inflammatory responses, ER/oxidative stress, and liver fibrosis, ultimately resulting in HCC development with 100% penetrance after four months on a high-fat diet. Comprehensive genomic and single cell transcriptomic atlas from affected livers provides a detailed molecular analysis of the transition from liver pathophysiology to HCC development. Importantly, pharmacological inhibition of diacylglycerol acyltransferase-2 (DGAT2), a key enzyme in hepatic TAG synthesis, abrogates diet-induced liver damage and HCC burden in N-LKO mice. Overall, our findings establish NgBR/cis-PTase as a critical suppressor of NAFLD-HCC conversion and suggests that DGAT2 inhibition may serve as a promising therapeutic approach to delay HCC formation in patients with advanced non-alcoholic steatohepatitis (NASH).

3.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711578

RESUMEN

The complexity of the multiple mechanisms underlying non-alcoholic fatty liver disease (NAFLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of NAFLD. We report that miR-33 is overexpressed in hepatocytes isolated from mice with NAFLD and demonstrate that its specific suppression in hepatocytes (miR-33 HKO ) improves multiple aspects of the disease, including insulin resistance, steatosis, and inflammation and limits the progression to non-alcoholic steatohepatitis (NASH), fibrosis and hepatocellular carcinoma (HCC). Mechanistically, we find that hepatic miR-33 deficiency reduces lipid biosynthesis and promotes mitochondrial fatty acid oxidation to reduce lipid burden in hepatocytes. Additionally, miR-33 deficiency improves mitochondrial function, reducing oxidative stress. In miR-33 deficient hepatocytes, we found an increase in AMPKα activation, which regulates several pathways resulting in the attenuation of liver disease. The reduction in lipid accumulation and liver injury resulted in decreased transcriptional activity of the YAP/TAZ pathway, which may be involved in the reduced progression to HCC in the HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach at different stages of NAFLD/NASH/HCC disease progression.

4.
Circulation ; 147(5): 388-408, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36416142

RESUMEN

BACKGROUND: Cross-talk between sterol metabolism and inflammatory pathways has been demonstrated to significantly affect the development of atherosclerosis. Cholesterol biosynthetic intermediates and derivatives are increasingly recognized as key immune regulators of macrophages in response to innate immune activation and lipid overloading. 25-Hydroxycholesterol (25-HC) is produced as an oxidation product of cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) and belongs to a family of bioactive cholesterol derivatives produced by cells in response to fluctuating cholesterol levels and immune activation. Despite the major role of 25-HC as a mediator of innate and adaptive immune responses, its contribution during the progression of atherosclerosis remains unclear. METHODS: The levels of 25-HC were analyzed by liquid chromatography-mass spectrometry, and the expression of CH25H in different macrophage populations of human or mouse atherosclerotic plaques, respectively. The effect of CH25H on atherosclerosis progression was analyzed by bone marrow adoptive transfer of cells from wild-type or Ch25h-/- mice to lethally irradiated Ldlr-/- mice, followed by a Western diet feeding for 12 weeks. Lipidomic, transcriptomic analysis and effects on macrophage function and signaling were analyzed in vitro from lipid-loaded macrophage isolated from Ldlr-/- or Ch25h-/-;Ldlr-/- mice. The contribution of secreted 25-HC to fibrous cap formation was analyzed using a smooth muscle cell lineage-tracing mouse model, Myh11ERT2CREmT/mG;Ldlr-/-, adoptively transferred with wild-type or Ch25h-/- mice bone marrow followed by 12 weeks of Western diet feeding. RESULTS: We found that 25-HC accumulated in human coronary atherosclerotic lesions and that macrophage-derived 25-HC accelerated atherosclerosis progression, promoting plaque instability through autocrine and paracrine actions. 25-HC amplified the inflammatory response of lipid-loaded macrophages and inhibited the migration of smooth muscle cells within the plaque. 25-HC intensified inflammatory responses of lipid-laden macrophages by modifying the pool of accessible cholesterol in the plasma membrane, which altered Toll-like receptor 4 signaling, promoted nuclear factor-κB-mediated proinflammatory gene expression, and increased apoptosis susceptibility. These effects were independent of 25-HC-mediated modulation of liver X receptor or SREBP (sterol regulatory element-binding protein) transcriptional activity. CONCLUSIONS: Production of 25-HC by activated macrophages amplifies their inflammatory phenotype, thus promoting atherogenesis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Ratones , Animales , Aterosclerosis/patología , Hidroxicolesteroles/metabolismo , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Colesterol , Inflamación/metabolismo , Ratones Noqueados
5.
Circ Res ; 131(1): 77-90, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35534923

RESUMEN

BACKGROUND: miRNA therapeutics have gained attention during the past decade. These oligonucleotide treatments can modulate the expression of miRNAs in vivo and could be used to correct the imbalance of gene expression found in human diseases such as obesity, metabolic syndrome, and atherosclerosis. The in vivo efficacy of current anti-miRNA technologies hindered by physiological and cellular barriers to delivery into targeted cells and the nature of miRNAs that allows one to target an entire pathway that may lead to deleterious off-target effects. For these reasons, novel targeted delivery systems to inhibit miRNAs in specific tissues will be important for developing effective therapeutic strategies for numerous diseases including atherosclerosis. METHODS: We used pH low-insertion peptide (pHLIP) constructs as vehicles to deliver microRNA-33-5p (miR-33) antisense oligonucleotides to atherosclerotic plaques. Immunohistochemistry and histology analysis was performed to assess the efficacy of miR-33 silencing in atherosclerotic lesions. We also assessed how miR-33 inhibition affects gene expression in monocytes/macrophages by single-cell RNA transcriptomics. RESULTS: The anti-miR-33 conjugated pHLIP constructs are preferentially delivered to atherosclerotic plaque macrophages. The inhibition of miR-33 using pHLIP-directed macrophage targeting improves atherosclerosis regression by increasing collagen content and decreased lipid accumulation within vascular lesions. Single-cell RNA sequencing analysis revealed higher expression of fibrotic genes (Col2a1, Col3a1, Col1a2, Fn1, etc) and tissue inhibitor of metalloproteinase 3 (Timp3) and downregulation of Mmp12 in macrophages from atherosclerotic lesions targeted by pHLIP-anti-miR-33. CONCLUSIONS: This study provides proof of principle for the application of pHLIP for treating advanced atherosclerosis via pharmacological inhibition of miR-33 in macrophages that avoid the deleterious effects in other metabolic tissues. This may open new therapeutic opportunities for atherosclerosis-associated cardiovascular diseases via selective delivery of other protective miRNAs.


Asunto(s)
Aterosclerosis , MicroARNs , Placa Aterosclerótica , Antagomirs/metabolismo , Antagomirs/uso terapéutico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/terapia , Humanos , Macrófagos/metabolismo , MicroARNs/metabolismo , Placa Aterosclerótica/patología
6.
Nat Commun ; 12(1): 6448, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750386

RESUMEN

Intricate regulatory networks govern the net balance of cholesterol biosynthesis, uptake and efflux; however, the mechanisms surrounding cholesterol homeostasis remain incompletely understood. Here, we develop an integrative genomic strategy to detect regulators of LDLR activity and identify 250 genes whose knockdown affects LDL-cholesterol uptake and whose expression is modulated by intracellular cholesterol levels in human hepatic cells. From these hits, we focus on MMAB, an enzyme which catalyzes the conversion of vitamin B12 to adenosylcobalamin, and whose expression has previously been linked with altered levels of circulating cholesterol in humans. We demonstrate that hepatic levels of MMAB are modulated by dietary and cellular cholesterol levels through SREBP2, the master transcriptional regulator of cholesterol homeostasis. Knockdown of MMAB decreases intracellular cholesterol levels and augments SREBP2-mediated gene expression and LDL-cholesterol uptake in human and mouse hepatic cell lines. Reductions in total sterol content were attributed to increased intracellular levels of propionic and methylmalonic acid and subsequent inhibition of HMGCR activity and cholesterol biosynthesis. Moreover, mice treated with antisense inhibitors of MMAB display a significant reduction in hepatic HMGCR activity, hepatic sterol content and increased expression of SREBP2-mediated genes. Collectively, these findings reveal an unexpected role for the adenosylcobalamin pathway in regulating LDLR expression and identify MMAB as an additional control point by which cholesterol biosynthesis is regulated by its end product.


Asunto(s)
Colesterol/metabolismo , Retroalimentación Fisiológica , Homeostasis , Hígado/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Animales , Línea Celular Tumoral , LDL-Colesterol/metabolismo , Perfilación de la Expresión Génica/métodos , Células HeLa , Células Hep G2 , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Interferencia de ARN , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34782454

RESUMEN

Cholesterol biosynthetic intermediates, such as lanosterol and desmosterol, are emergent immune regulators of macrophages in response to inflammatory stimuli or lipid overloading, respectively. However, the participation of these sterols in regulating macrophage functions in the physiological context of atherosclerosis, an inflammatory disease driven by the accumulation of cholesterol-laden macrophages in the artery wall, has remained elusive. Here, we report that desmosterol, the most abundant cholesterol biosynthetic intermediate in human coronary artery lesions, plays an essential role during atherogenesis, serving as a key molecule integrating cholesterol homeostasis and immune responses in macrophages. Depletion of desmosterol in myeloid cells by overexpression of 3ß-hydroxysterol Δ24-reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol, promotes the progression of atherosclerosis. Single-cell transcriptomics in isolated CD45+CD11b+ cells from atherosclerotic plaques demonstrate that depletion of desmosterol increases interferon responses and attenuates the expression of antiinflammatory macrophage markers. Lipidomic and transcriptomic analysis of in vivo macrophage foam cells demonstrate that desmosterol is a major endogenous liver X receptor (LXR) ligand involved in LXR/retinoid X receptor (RXR) activation and thus macrophage foam cell formation. Decreased desmosterol accumulation in mitochondria promotes macrophage mitochondrial reactive oxygen species production and NLR family pyrin domain containing 3 (NLRP3)-dependent inflammasome activation. Deficiency of NLRP3 or apoptosis-associated speck-like protein containing a CARD (ASC) rescues the increased inflammasome activity and atherogenesis observed in desmosterol-depleted macrophages. Altogether, these findings underscore the critical function of desmosterol in the atherosclerotic plaque to dampen inflammation by integrating with macrophage cholesterol metabolism and inflammatory activation and protecting from disease progression.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Desmosterol/farmacología , Inflamasomas/metabolismo , Inflamación/tratamiento farmacológico , Activación de Macrófagos/efectos de los fármacos , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Colesterol/metabolismo , Vasos Coronarios , Células Espumosas/metabolismo , Humanos , Inflamación/metabolismo , Metabolismo de los Lípidos , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Placa Aterosclerótica/metabolismo , Esteroles/metabolismo
8.
JCI Insight ; 6(12)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34003795

RESUMEN

Epigenetic modifications of the genome, including DNA methylation, histone methylation/acetylation, and noncoding RNAs, have been reported to play a fundamental role in regulating immune response during the progression of atherosclerosis. SETDB2 is a member of the KMT1 family of lysine methyltransferases, and members of this family typically methylate histone H3 Lys9 (H3K9), an epigenetic mark associated with gene silencing. Previous studies have shown that SETDB2 is involved in innate and adaptive immunity, the proinflammatory response, and hepatic lipid metabolism. Here, we report that expression of SETDB2 is markedly upregulated in human and murine atherosclerotic lesions. Upregulation of SETDB2 was observed in proinflammatory M1 but not antiinflammatory M2 macrophages. Notably, we found that genetic deletion of SETDB2 in hematopoietic cells promoted vascular inflammation and enhanced the progression of atherosclerosis in BM transfer studies in Ldlr-knockout mice. Single-cell RNA-Seq analysis in isolated CD45+ cells from atherosclerotic plaques from mice transplanted with SETDB2-deficient BM revealed a significant increase in monocyte population and enhanced expression of genes involved in inflammation and myeloid cell recruitment. Additionally, we found that loss of SETDB2 in hematopoietic cells was associated with macrophage accumulation in atherosclerotic lesions and attenuated efferocytosis. Overall, these studies identify SETDB2 as an important inflammatory cell regulator that controls macrophage activation in atherosclerotic plaques.


Asunto(s)
Aterosclerosis , N-Metiltransferasa de Histona-Lisina , Inflamación , Macrófagos , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Células Cultivadas , Citocinas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Macrófagos/enzimología , Macrófagos/metabolismo , Masculino , Ratones , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Transcriptoma/genética , Regulación hacia Arriba/genética
9.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212990

RESUMEN

Insulin resistance (IR) is one of the key contributing factors in the development of type 2 diabetes mellitus (T2DM). However, the molecular mechanisms leading to IR are still unclear. The implication of microRNAs (miRNAs) in the pathophysiology of multiple cardiometabolic pathologies, including obesity, atherosclerotic heart failure and IR, has emerged as a major focus of interest in recent years. Indeed, upregulation of several miRNAs has been associated with obesity and IR. Among them, miR-27b is overexpressed in the liver in patients with obesity, but its role in IR has not yet been thoroughly explored. In this study, we investigated the role of miR-27b in regulating insulin signaling in hepatocytes, both in vitro and in vivo. Therefore, assessment of the impact of miR-27b on insulin resistance through the hepatic tissue is of special importance due to the high expression of miR-27b in the liver together with its known role in regulating lipid metabolism. Notably, we found that miR-27b controls post-transcriptional expression of numerous components of the insulin signaling pathway including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1) in human hepatoma cells. These results were further confirmed in vivo showing that overexpression and inhibition of hepatic miR-27 enhances and suppresses hepatic INSR expression and insulin sensitivity, respectively. This study identified a novel role for miR-27 in regulating insulin signaling, and this finding suggests that elevated miR-27 levels may contribute to early development of hepatic insulin resistance.


Asunto(s)
Hepatocitos/metabolismo , Insulina/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal , Línea Celular , Hepatocitos/citología , Humanos , Insulina/genética , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Receptor de Insulina/genética
10.
Curr Opin Hematol ; 27(3): 206-213, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32205586

RESUMEN

PURPOSE OF REVIEW: Since the first discovery of Angiopoetin-like 4 (ANGPTL4) in 2000, the involvement of ANGPTL4 in different aspects of lipid metabolism and vascular biology has emerged as an important research field. In this review, we summarize the fundamental roles of ANGPTL4 in regulating metabolic and nonmetabolic functions and their implication in lipid metabolism and with several aspects of vascular function and dysfunction. RECENT FINDINGS: ANGPTL4 is a secreted glycoprotein with a physiological role in lipid metabolism and a predominant expression in adipose tissue and liver. ANGPTL4 inhibits the activity of lipoprotein lipase and thereby promotes an increase in circulating triglyceride levels. Therefore, ANGPTL4 has been highly scrutinized as a potential therapeutic target. Further involvement of ANGPTL4 has been shown to occur in tumorigenesis, angiogenesis, vascular permeability and stem cell regulation, which opens new opportunities of using ANGPTL4 as potential therapeutic targets for other pathophysiological conditions. SUMMARY: Further determination of ANGPTL4 regulatory circuits and defining specific molecular events that mediate its biological effects remain key to future ANGPTL4-based therapeutic applications in different disease settings. Many new and unanticipated roles of ANGPTL4 in the control of cell-specific functions will assist clinicians and researchers in developing potential therapeutic applications.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/biosíntesis , Permeabilidad Capilar , Carcinogénesis/metabolismo , Metabolismo de los Lípidos , Neovascularización Patológica/metabolismo , Células Madre/metabolismo , Animales , Carcinogénesis/patología , Humanos , Neovascularización Patológica/patología , Células Madre/patología
11.
J Clin Invest ; 129(12): 5518-5536, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31710308

RESUMEN

microRNA-21 (miR-21) is the most commonly upregulated miRNA in solid tumors. This cancer-associated microRNA (oncomiR) regulates various downstream effectors associated with tumor pathogenesis during all stages of carcinogenesis. In this study, we analyzed the function of miR-21 in noncancer cells of the tumor microenvironment to further evaluate its contribution to tumor progression. We report that the expression of miR-21 in cells of the tumor immune infiltrate, and in particular in macrophages, was responsible for promoting tumor growth. Absence of miR-21 expression in tumor- associated macrophages (TAMs), caused a global rewiring of their transcriptional regulatory network that was skewed toward a proinflammatory angiostatic phenotype. This promoted an antitumoral immune response characterized by a macrophage-mediated improvement of cytotoxic T-cell responses through the induction of cytokines and chemokines, including IL-12 and C-X-C motif chemokine 10. These effects translated to a reduction in tumor neovascularization and an induction of tumor cell death that led to decreased tumor growth. Additionally, using the carrier peptide pH (low) insertion peptide, we were able to target miR-21 in TAMs, which decreased tumor growth even under conditions where miR-21 expression was deficient in cancer cells. Consequently, miR-21 inhibition in TAMs induced an angiostatic and immunostimulatory activation with potential therapeutic implications.


Asunto(s)
Macrófagos/inmunología , MicroARNs/genética , Neoplasias/inmunología , Animales , Quimiocina CXCL10/fisiología , Citotoxicidad Inmunológica , Interleucina-12/fisiología , Ratones , Ratones Endogámicos C57BL , Neoplasias/irrigación sanguínea , Microambiente Tumoral
12.
Circ Res ; 124(6): 874-880, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30707082

RESUMEN

RATIONALE: Inhibition of miR-33 reduces atherosclerotic plaque burden, but miR-33 deficient mice are predisposed to the development of obesity and metabolic dysfunction. The proatherogenic effects of miR-33 are thought to be in large part because of its repression of macrophage cholesterol efflux, through targeting of Abca1 (ATP-binding cassette subfamily A member 1). However, targeting of other factors may also be required for the beneficial effects of miR-33, and currently available approaches have not allowed researchers to determine the specific impact of individual miRNA target interactions in vivo. OBJECTIVE: In this work, we sought to determine how specific disruption of Abca1 targeting by miR-33 impacts macrophage cholesterol efflux and atherosclerotic plaque formation in vivo. METHODS AND RESULTS: We have generated a novel mouse model with specific point mutations in the miR-33 binding sites of the Abca1 3'untranslated region, which prevents targeting by miR-33. Abca1 binding site mutant ( Abca1BSM) mice had increased hepatic ABCA1 expression but did not show any differences in body weight or metabolic function after high fat diet feeding. Macrophages from Abca1BSM mice also had increased ABCA1 expression, as well as enhanced cholesterol efflux and reduced foam cell formation. Moreover, LDLR (low-density lipoprotein receptor) deficient animals transplanted with bone marrow from Abca1BSM mice had reduced atherosclerotic plaque formation, similar to mice transplanted with bone marrow from miR-33 knockout mice. CONCLUSION: Although the more pronounced phenotype of miR-33 deficient animals suggests that other targets may also play an important role, our data clearly demonstrate that repression of ABCA1 is primarily responsible for the proatherogenic effects of miR-33. This work shows for the first time that disruption of a single miRNA/target interaction can be sufficient to mimic the effects of miRNA deficiency on complex physiological phenotypes in vivo and provides an approach by which to assess the impact of individual miRNA targets.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/fisiología , Colesterol/metabolismo , Macrófagos/metabolismo , MicroARNs/fisiología , Placa Aterosclerótica/etiología , Transportador 1 de Casete de Unión a ATP/genética , Animales , Sitios de Unión , Ratones , Ratones Noqueados , Receptores de LDL/fisiología
13.
Vascul Pharmacol ; 114: 64-75, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29551552

RESUMEN

The endothelial lining can be viewed as the first line of defense against risk factors of vascular disease. Endothelial dysfunction is regarded as an initial event for atherogenesis since defects in vascular integrity and homeostasis are responsible for lipid infiltration and recruitment of monocytes into the vessel wall. Monocytes-turned-macrophages, which possess astounding inflammatory plasticity, perpetuate chronic inflammation and growth of atherosclerotic plaques and, are therefore central for the pathogenesis of atherosclerosis. Because endothelial cells and macrophages are key players during atherogenesis, it is crucial to understand the regulation of their functions in order to develop strategies to intervene disease progression. Interestingly, non-coding RNAs (ncRNAs), broad class of RNA molecules that do not code for proteins, are capable of reprogramming multiple cell functions and, thus, can be used as target agents. MicroRNAs are small ncRNAs whose roles in the regulation of vascular functions and development of atherosclerosis through post-transcriptional manipulation of gene expression have been widely explored. Recently, other ncRNAs including long noncoding RNAs (lncRNAs) have also emerged as potential regulators of these functions. However, given their poor-genetic conservation between species, much work will be needed to elucidate the specific role of lncRNAs in vascular biology. This review aims to provide a comprehensive perspective of ncRNA, mostly focusing in lncRNAs, mechanism of action and relevance in regulating lipid metabolism-independent endothelial and macrophages functions in the pathogenesis of atherosclerosis.


Asunto(s)
Arterias/metabolismo , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Macrófagos/metabolismo , ARN no Traducido/metabolismo , Animales , Arterias/patología , Aterosclerosis/genética , Aterosclerosis/patología , Células Endoteliales/patología , Regulación de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Activación de Macrófagos , Macrófagos/patología , Fenotipo , Placa Aterosclerótica , ARN no Traducido/genética , Transducción de Señal
14.
Cell Rep ; 21(5): 1317-1330, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29091769

RESUMEN

As an important regulator of macrophage cholesterol efflux and HDL biogenesis, miR-33 is a promising target for treatment of atherosclerosis, and numerous studies demonstrate that inhibition of miR-33 increases HDL levels and reduces plaque burden. However, important questions remain about how miR-33 impacts atherogenesis, including whether this protection is primarily due to direct effects on plaque macrophages or regulation of lipid metabolism in the liver. We demonstrate that miR-33 deficiency in Ldlr-/- mice promotes obesity, insulin resistance, and hyperlipidemia but does not impact plaque development. We further assess how loss of miR-33 or addition of miR-33b in macrophages and other hematopoietic cells impact atherogenesis. Macrophage-specific loss of miR-33 decreases lipid accumulation and inflammation under hyperlipidemic conditions, leading to reduced plaque burden. Therefore, the pro-atherogenic effects observed in miR-33-deficient mice are likely counterbalanced by protective effects in macrophages, which may be the primary mechanism through which anti-miR-33 therapies reduce atherosclerosis.


Asunto(s)
Aterosclerosis/patología , MicroARNs/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Aorta/patología , Aterosclerosis/metabolismo , Aterosclerosis/veterinaria , Glucemia/análisis , Células Cultivadas , Colesterol/metabolismo , HDL-Colesterol/sangre , Progresión de la Enfermedad , Redes Reguladoras de Genes , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Subunidad beta de la Proteína Trifuncional Mitocondrial/metabolismo , Miocardio/metabolismo , Miocardio/patología , Receptores de LDL/deficiencia , Receptores de LDL/genética
15.
EMBO Mol Med ; 9(9): 1244-1262, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28674080

RESUMEN

Atherosclerosis, the major cause of cardiovascular disease, is a chronic inflammatory disease characterized by the accumulation of lipids and inflammatory cells in the artery wall. Aberrant expression of microRNAs has been implicated in the pathophysiological processes underlying the progression of atherosclerosis. Here, we define the contribution of miR-21 in hematopoietic cells during atherogenesis. Interestingly, we found that miR-21 is the most abundant miRNA in macrophages and its absence results in accelerated atherosclerosis, plaque necrosis, and vascular inflammation. miR-21 expression influences foam cell formation, sensitivity to ER-stress-induced apoptosis, and phagocytic clearance capacity. Mechanistically, we discovered that the absence of miR-21 in macrophages increases the expression of the miR-21 target gene, MKK3, promoting the induction of p38-CHOP and JNK signaling. Both pathways enhance macrophage apoptosis and promote the post-translational degradation of ABCG1, a transporter that regulates cholesterol efflux in macrophages. Altogether, these findings reveal a major role for hematopoietic miR-21 in atherogenesis.


Asunto(s)
Apoptosis , Aterosclerosis/fisiopatología , Macrófagos/inmunología , MicroARNs/inmunología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/inmunología , Animales , Aterosclerosis/genética , Aterosclerosis/inmunología , Aterosclerosis/patología , Vasos Sanguíneos/inmunología , Femenino , Humanos , MAP Quinasa Quinasa 3/genética , MAP Quinasa Quinasa 3/inmunología , Macrófagos/citología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Necrosis/genética , Necrosis/inmunología , Necrosis/patología , Necrosis/fisiopatología
16.
Cell Rep ; 19(13): 2743-2755, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28658622

RESUMEN

Macrophages perform critical functions in both innate immunity and cholesterol metabolism. Here, we report that activation of Toll-like receptor 4 (TLR4) in macrophages causes lanosterol, the first sterol intermediate in the cholesterol biosynthetic pathway, to accumulate. This effect is due to type I interferon (IFN)-dependent histone deacetylase 1 (HDAC1) transcriptional repression of lanosterol-14α-demethylase, the gene product of Cyp51A1. Lanosterol accumulation in macrophages, because of either treatment with ketoconazole or induced conditional disruption of Cyp51A1 in mouse macrophages in vitro, decreases IFNß-mediated signal transducer and activator of transcription (STAT)1-STAT2 activation and IFNß-stimulated gene expression. These effects translate into increased survival to endotoxemic shock by reducing cytokine secretion. In addition, lanosterol accumulation increases membrane fluidity and ROS production, thus potentiating phagocytosis and the ability to kill bacteria. This improves resistance of mice to Listeria monocytogenes infection by increasing bacterial clearance in the spleen and liver. Overall, our data indicate that lanosterol is an endogenous selective regulator of macrophage immunity.


Asunto(s)
Lanosterol/inmunología , Macrófagos/inmunología , Receptor Toll-Like 4/inmunología , Animales , Regulación hacia Abajo , Femenino , Técnicas de Inactivación de Genes , Humanos , Inmunidad Innata/efectos de los fármacos , Lanosterol/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Esterol 14-Desmetilasa/inmunología
17.
Nat Commun ; 7: 12313, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27460411

RESUMEN

Lipid accumulation in macrophages has profound effects on macrophage gene expression and contributes to the development of atherosclerosis. Here, we report that angiopoietin-like protein 4 (ANGPTL4) is the most highly upregulated gene in foamy macrophages and it's absence in haematopoietic cells results in larger atherosclerotic plaques, characterized by bigger necrotic core areas and increased macrophage apoptosis. Furthermore, hyperlipidemic mice deficient in haematopoietic ANGPTL4 have higher blood leukocyte counts, which is associated with an increase in the common myeloid progenitor (CMP) population. ANGPTL4-deficient CMPs have higher lipid raft content, are more proliferative and less apoptotic compared with the wild-type (WT) CMPs. Finally, we observe that ANGPTL4 deficiency in macrophages promotes foam cell formation by enhancing CD36 expression and reducing ABCA1 localization in the cell surface. Altogether, these findings demonstrate that haematopoietic ANGPTL4 deficiency increases atherogenesis through regulating myeloid progenitor cell expansion and differentiation, foam cell formation and vascular inflammation.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/deficiencia , Aterosclerosis/metabolismo , Aterosclerosis/patología , Progresión de la Enfermedad , Células Madre Hematopoyéticas/metabolismo , Monocitos/metabolismo , Proteína 4 Similar a la Angiopoyetina/metabolismo , Animales , Apoptosis , Aterosclerosis/complicaciones , Trasplante de Médula Ósea , Proliferación Celular , Supervivencia Celular , Células Espumosas/metabolismo , Humanos , Inflamación/complicaciones , Inflamación/patología , Leucocitosis/complicaciones , Leucocitosis/patología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Células Progenitoras Mieloides/metabolismo , Placa Aterosclerótica/complicaciones , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología
18.
Circ Res ; 118(1): 38-47, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26472816

RESUMEN

RATIONALE: Several lines of evidence indicate that the regulation of microRNA (miRNA) levels by different stimuli may contribute to the modulation of stimulus-induced responses. The miR-17-92 cluster has been linked to tumor development and angiogenesis, but its role in vascular endothelial growth factor-induced endothelial cell (EC) functions is unclear and its regulation is unknown. OBJECTIVE: The purpose of this study was to elucidate the mechanism by which VEGF regulates the expression of miR-17-92 cluster in ECs and determine its contribution to the regulation of endothelial angiogenic functions, both in vitro and in vivo. This was done by analyzing the effect of postnatal inactivation of miR-17-92 cluster in the endothelium (miR-17-92 iEC-KO mice) on developmental retinal angiogenesis, VEGF-induced ear angiogenesis, and tumor angiogenesis. METHODS AND RESULTS: Here, we show that Erk/Elk1 activation on VEGF stimulation of ECs is responsible for Elk-1-mediated transcription activation (chromatin immunoprecipitation analysis) of the miR-17-92 cluster. Furthermore, we demonstrate that VEGF-mediated upregulation of the miR-17-92 cluster in vitro is necessary for EC proliferation and angiogenic sprouting. Finally, we provide genetic evidence that miR-17-92 iEC-KO mice have blunted physiological retinal angiogenesis during development and diminished VEGF-induced ear angiogenesis and tumor angiogenesis. Computational analysis and rescue experiments show that PTEN (phosphatase and tensin homolog) is a target of the miR-17-92 cluster and is a crucial mediator of miR-17-92-induced EC proliferation. However, the angiogenic transcriptional program is reduced when miR-17-92 is inhibited. CONCLUSIONS: Taken together, our results indicate that VEGF-induced miR-17-92 cluster expression contributes to the angiogenic switch of ECs and participates in the regulation of angiogenesis.


Asunto(s)
Endotelio Vascular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , MicroARNs/biosíntesis , Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Endotelio Vascular/efectos de los fármacos , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Noqueados , MicroARNs/genética , Neovascularización Fisiológica/efectos de los fármacos
19.
Hepatology ; 63(5): 1660-74, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26473496

RESUMEN

UNLABELLED: Understanding the hepatic regenerative process has clinical interest as the effectiveness of many treatments for chronic liver diseases is conditioned by efficient liver regeneration. Experimental evidence points to the need for a temporal coordination between cytokines, growth factors, and metabolic signaling pathways to enable successful liver regeneration. One intracellular mediator that acts as a signal integration node for these processes is the serine-threonine kinase Akt/protein kinase B (Akt). To investigate the contribution of Akt during hepatic regeneration, we performed partial hepatectomy in mice lacking Akt1, Akt2, or both isoforms. We found that absence of Akt1 or Akt2 does not influence liver regeneration after partial hepatectomy. However, hepatic-specific Akt1 and Akt2 null mice show impaired liver regeneration and increased mortality. The major abnormal cellular events observed in total Akt-deficient livers were a marked reduction in cell proliferation, cell hypertrophy, glycogenesis, and lipid droplet formation. Most importantly, liver-specific deletion of FoxO1, a transcription factor regulated by Akt, rescued the hepatic regenerative capability in Akt1-deficient and Akt2-deficient mice and normalized the cellular events associated with liver regeneration. CONCLUSION: The Akt-FoxO1 signaling pathway plays an essential role during liver regeneration.


Asunto(s)
Factores de Transcripción Forkhead/fisiología , Regeneración Hepática , Proteínas Proto-Oncogénicas c-akt/fisiología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/fisiología , Animales , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/antagonistas & inhibidores , Hepatocitos/patología , Hiperplasia , Metabolismo de los Lípidos , Masculino , Ratones , Transducción de Señal/fisiología
20.
Sci Signal ; 8(401): ra111, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26535009

RESUMEN

Cholesterol is a lipid that is critical for steroid hormone production and the integrity of cellular membranes, and, as such, it is essential for cell growth. The epidermal growth factor receptor (EGFR) family member ERBB4, which forms signaling complexes with other EGFR family members, can undergo ligand-induced proteolytic cleavage to release a soluble intracellular domain (ICD) that enters the nucleus to modify transcription. We found that ERBB4 activates sterol regulatory element binding protein-2 (SREBP-2) to enhance low-density lipoprotein (LDL) uptake and cholesterol biosynthesis. Expression of the ERBB4 ICD in mammary epithelial cells or activation of ERBB4 with the ligand neuregulin 1 (NRG1) induced the expression of SREBP target genes involved in cholesterol biosynthesis, including HMGCR and HMGCS1, and lipid uptake, LDLR, which encodes the LDL receptor. Addition of NRG1 increased the abundance of the cleaved, mature form of SREBP-2 through a pathway that was blocked by addition of inhibitors of PI3K (phosphatidylinositol 3-kinase) or dual inhibition of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2, but not by inhibition of AKT or mTORC1. Pharmacological inhibition of the activity of SREBP site 1 protease or of all EGFR family members (with lapatinib), but not EGFR alone (with erlotinib), impaired NRG1-induced expression of cholesterol biosynthesis genes. Collectively, our findings indicated that activation of ERBB4 promotes SREBP-2-regulated cholesterol metabolism. The connections of EGFR and ERBB4 signaling with SREBP-2-regulated cholesterol metabolism are likely to be important in ERBB-regulated developmental processes and may contribute to metabolic remodeling in ERBB-driven cancers.


Asunto(s)
Colesterol/biosíntesis , Lipoproteínas LDL/metabolismo , Neurregulina-1/metabolismo , Receptor ErbB-4/metabolismo , Receptores de LDL/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Línea Celular Tumoral , Colesterol/genética , Femenino , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Lipoproteínas LDL/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Neurregulina-1/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-4/genética , Receptores de LDL/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA