Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Biol Macromol ; 256(Pt 2): 127490, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979758

RESUMEN

Hepatic cancer is among the most recurrently detected malignancies worldwide and one of the main contributors to cancer-associated mortality. With few available therapeutic choices, there is an instant necessity to explore suitable options. In this aspect, Nanotechnology has been employed to explore prospective chemotherapeutic approaches, especially for cancer treatment. Nanotechnology is concerned with the biological and physical properties of nanoparticles in the therapeutic use of drugs. In the current work, formulation, and characterization of α-Fe2O3-Sodium Alginate-Eugenol nanocomposites (FSE NCs) using several approaches like SEM and TEM, UV-visible, FTIR, and PL spectroscopy, XRD, EDAX, and DLS studies have been performed. With an average size of 50 nm, the rhombohedral structure of NCs was identified. Further, their anticancer activity against Hep3B liver cancer cell lines has been performed by cell viability, dual staining, DCFH-DA, Annexin-V/-FITC/PI, cell cycle analysis methods, and PI3K/Akt/mTOR signaling proteins were studied to assess the anticancer effects of the NCs in Hep3B cells. Also, anti-cancer activity on animal modeling in-vivo using zebra fishes to hematological parameters, liver enzymes, and histopathology study effectiveness was noticed. Moreover, the NCs reduced the viability, elevated the ROS accumulation, diminished the membrane integrity, reduced the antioxidants, blocked the cell cycle, and triggered the PI3K/Akt/mTOR signaling axis that eventually resulted in cell death. As a result, FSE NCs possess huge potential for use as a possible anticancer candidate.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Compuestos Férricos , Nanocompuestos , Animales , Pez Cebra/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Eugenol/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Alginatos/farmacología , Estudios Prospectivos , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Nanocompuestos/química , Línea Celular Tumoral
2.
J Mater Chem B ; 11(7): 1389-1415, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36727243

RESUMEN

Human cells, especially stem cells, need to communicate and interact with extracellular matrix (ECM) proteins, which not only serve as structural components but also guide and support cell fate and properties such as cell adhesion, proliferation, survival and differentiation. The binding of the cells with ECM proteins or ECM-derived peptides via cell adhesion receptors such as integrins activates several signaling pathways that determine the cell fate, morphological change, proliferation and differentiation. The development of synthetic ECM protein-derived peptides that mimic the biological and biochemical functions of natural ECM proteins will benefit academic and clinical application. Peptides derived from or inspired by specific ECM proteins can act as agonists of each ECM protein receptor. Given that most ECM proteins function in cell adhesion via integrin receptors, many peptides have been developed that bind to specific integrin receptors. In this review, we discuss the peptide sequence, immobilization design, reaction method, and functions of several ECM protein-derived peptides. Various peptide sequences derived from mainly ECM proteins, which are used for coating or grafting on dishes, scaffolds, hydrogels, implants or nanofibers, have been developed to improve the adhesion, proliferation or differentiation of stem cells and to culture differentiated cells. This review article will help to inform the optimal choice of ECM protein-derived peptides for the development of scaffolds, implants, hydrogels, nanofibers and 2D cell culture dishes to regulate the proliferation and direct the differentiation of stem cells into specific lineages.


Asunto(s)
Proteínas de la Matriz Extracelular , Péptidos , Humanos , Péptidos/química , Diferenciación Celular , Integrinas/metabolismo , Células Madre/metabolismo , Proliferación Celular , Hidrogeles
3.
J Mater Chem B ; 11(7): 1434-1444, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36541288

RESUMEN

Human pluripotent stem cells (hPSCs) have the ability to differentiate into cells derived from three germ layers and are an attractive cell source for cell therapy in regenerative medicine. However, hPSCs cannot be cultured on conventional tissue culture flasks but can be cultured on biomaterials with specific hPSC integrin interaction sites. We designed hydrogels conjugated with several designed peptides that had laminin-ß4 active sites, optimal elasticities and different zeta potentials. A higher expansion fold of hPSCs cultured on the hydrogels was found with the increasing zeta potential of the hydrogels conjugated with designed peptides, where positive amino acid (lysine) insertion into the peptides promoted higher zeta potentials of the hydrogels and higher expansion folds of hPSCs when cultured on the hydrogels using xeno-free protocols. The hPSCs cultured on hydrogels conjugated with the optimal peptides showed a higher expansion fold than those on recombinant vitronectin-coated plates, which are the gold standard of hPSC cultivation dishes. The hPSCs could differentiate into specific cell lineages, such as mesenchymal stem cells (MSCs) and MSC-derived osteoblasts, even after being cultivated on hydrogels conjugated with optimal peptides for long periods of time, such as 10 passages.


Asunto(s)
Hidrogeles , Células Madre Pluripotentes , Humanos , Hidrogeles/química , Proliferación Celular , Células Madre Pluripotentes/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Diferenciación Celular
4.
Contemp Oncol (Pozn) ; 27(4): 255-262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38405210

RESUMEN

Introduction: Cutaneous squamous cell carcinoma (SCC) is the second most common form of skin malignancy, representing around 20% of all skin cancers. It is the main cause of death due to non-melanoma skin cancer every year. Metastatic cutaneous SCC is associated with poor prognosis in patients and warrants a more effective and specific approach such as disruption of genes associated with cancer metastasis. Material and methods: Matrix metalloproteinases (MMPs) are enzymes involved in cancer progression and are regarded as major oncotargets. Among others, MMP9 plays critical roles in tumour progression, angiogenesis, and invasion of cutaneous SCC. We aimed to determine whether the MMP9 gene is a suitable gene target for anti-cancer therapy for cutaneous SCC. We performed clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 transfection of guide RNA (gRNA) targeting the MMP9 gene into human cutaneous SCC cell line A431. Results: Following CRISPR transfection treatment, the viability (p < 0.01) and migratory activities (p < 0.0001) of in vitro cutaneous SCC cells were found to be reduced significantly. The use of quantitative polymerase chain reaction (qPCR) also revealed downregulation of the mRNA expression levels of cancer-promoting genes TGF-ß, FGF, PI3K, VEGF-A, and vimentin. Direct inhibition of the MMP9 gene was shown to decrease survivability and metastasis of cutaneous SCC cell line A431. Conclusions: Our findings provided direct evidence that MMP9 is important in the viability, proliferation, and metastasis of cutaneous SCC cells. It serves as a positive foundation for future CRISPR-based targeted anti-cancer therapies in treating skin cancer and other forms of malignancies that involve MMPs as the key determinants.

5.
Bioinorg Chem Appl ; 2022: 1473922, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36199748

RESUMEN

The main aim of this study was to synthesize copper oxide- (CuO-) titanium oxide- (TiO2-) chitosan-amygdalin nanocomposites (CTCANc) and to characterize them physically and biologically (antimicrobial and anticancer activity using MOLT4 blood cancer cell line) to endorse their useful applications as potential drug candidates in anticancer avenues. CuO-TiO2-chitosan-amygdalin nanocomposites were synthesized according to standard, reported methods. Physical characterization of the nanocomposites was performed using methods like X-ray diffractometer (XRD), and morphological and ultrastructural analysis of nanocomposites were done using electron microscope scanning and transmission. FTIR was recorded using a Perkin-Elmer spectrometer, and photoluminescence (PL) spectra were done using the spectrometer. Further, antibacterial activities were assessed using standard bacterial cultures. To demonstrate the nanocomposite's anticancer effects, MTT assay, morphological analysis, apoptosis studies using acridine orange/ethidium bromide (AO/EtBr) dual staining, reactive oxygen species (ROS) analysis, and levels of antioxidant enzymes were analyzed using the MOLT4 blood cancer cell line. Synthesized nanocomposites were characterized using XRD and showed various peaks, respectively, for CuO-TiO2, amygdalin, and chitosan. MTT assay indicated an IC50 value of 38.41 µg/ml concentration of CTCANc. Hence, 30 and 40 µg/ml were used for the subsequent experiments. Morphological analysis, staining for apoptosis using AO/EtBr, mitochondrial membrane potential (MMP or ΔΨm) analysis, ROS analysis, and determination of the SOD, CAT, MDA, and GSH levels were performed. Observations like a significant loss of morphology, induction of apoptosis, elevated ROS, and decreased MMP were significant in 30 and 40 µg/ml nanocomposite-treated cells when compared to control cells. The bimetallic nanocomposites exhibited typical nanocomposites characteristics and significant antibacterial and anticancer effects. The study results endorse the antibacterial, anticancer activity of CuO-TiO2-chitosan-amygdalin nanocomposites and strongly suggest that further in-depth research using CuO-TiO2-chitosan-amygdalin nanocomposites could reveal their efficacy in the clinical scenario.

6.
Bioinorg Chem Appl ; 2022: 6835625, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212986

RESUMEN

Currently, new advancements in the area of nanotechnology opened up new prospects in the field of medicine that could provide us with a solution for numerous medical complications. Although a several varieties of nanoparticles is being explored to be used as nanomedicines, cerium oxide nanoparticles (CeO2 NPs) are the most attractive due to their biocompatibility and their switchable oxidation state (+3 and +4) or in other words the ability to act as prooxidant and antioxidant depending on the pH condition. Green synthesis of nanoparticles is preferred to make it more economical, eco-friendly, and less toxic. The aim of our study here is to formulate the CeO2 NPs (CeO2 NPs) using Morinda citrifolia (Noni) leaf extract and study its optical, structural, antibacterial, and anticancer abilities. Their optical and structural characterization was accomplished by employing X-ray diffractography (XRD), TEM, EDAX, FTIR, UV-vis, and photoluminescence assays. Our CeO2 NPs expressed strong antibacterial effects against Gram-positive S. aureus and S. pneumonia in addition to Gram-negative E. coli and K. pneumonia when compared with amoxicillin. The anticancer properties of the green synthesized CeO2 NPs against human acute lymphoblastic leukemia (ALL) MOLT-4 cells were further explored by the meticulous study of their ability to diminish cancer cell viability (cytotoxicity), accelerate apoptosis, escalate intracellular reactive oxygen species (ROS) accumulation, decline the mitochondria membrane potential (MMP) level, modify the cell adhesion, and shoot up the activation of proapoptotic markers, caspase-3, -8, and -9, in the tumor cells. Altogether, the outcomes demonstrated that our green synthesized CeO2 NPs are an excellent candidate for alternative cancer therapy.

7.
Bioinorg Chem Appl ; 2022: 5949086, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212987

RESUMEN

Leukemia is the most prevalent cancer in children and one of the most common and deadly cancers that affect adults. Several metal oxide nanoparticles, biopolymers, and phytochemicals have been discovered to target cancer cells selectively while inflicting low to no damage to healthy cells. Among the existing nanoparticle synthesis methodologies, biologically synthesized nanoparticles using phytochemicals have emerged as a straightforward, economical, and environmentally sound strategy. The synergistic antitumor potential of ZnO-TiO2-chitosan-farnesol nanocomposites (NCs) against leukemia MOLT-4 cells was investigated in the current study. After synthesizing the NCs, characterization of the same was carried out using XRD, DLS, FESEM, TEM, PL, EDX, and FTIR spectroscopy. To analyze its anticancer activity, MOLT-4 cells were cultured and treated at diverse dosages of NCs. The cell viability upon treatment was examined by MTT assay. The morphological and nuclear modifications were observed by dual staining. ROS and MMP levels were observed by DCFH-DA staining and Rh-123 dye, respectively. Furthermore, the caspase 3, 8, and 9 levels were examined by performing ELISA. The XRD patterns exhibited a hexagonal structure of the NCs. In the DLS spectrum, the hydrodynamic diameter of the NCs was observed to be 126.2 nm. The electrostatic interface between the ZnO-TiO2-chitosan-farnesol NCs was confirmed by the FTIR spectra. A significant loss of cell viability in a dosage-dependent trend confirmed the cytotoxic effect of the NCs. An elevated ROS level and MMP depletion suggested apoptosis-associated cell death via the intrinsic pathway, which was confirmed by elevated expressions of caspase 3, 8, and 9 markers. Thus, the results showed that the synthesized NCs demonstrated a remarkable anticancer potential against leukemic cells and can be potentially valuable in cancer treatments. The findings from this study conclude that this is a new approach for modifying the physicochemical characteristics of ZnO-TiO2-chitosan-farnesol composites to increase their properties and synergistically exhibit anticancer properties in human leukemic cancer cells.

8.
Bioinorg Chem Appl ; 2022: 9602725, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36164585

RESUMEN

In this study, cells from human Chronic Myelogenous Leukemia (K562) were cultivated with CuO-TiO2-Chitosan-Berbamine nanocomposites. We examined nanocomposites using XRD, DLS, FESEM, TEM, PL, EDAX, and FTIR spectroscopy, as well as MTT for cytotoxicity, and AO/EtBr for apoptotic morphology assessment. The rate of apoptosis and cell cycle arrests was determined using flow cytometry. Flow cytometry was also employed to identify pro- and antiapoptotic proteins such as Bcl2, Bad, Bax, P53, and Cyt C. The FTIR spectrum revealed that the CuO-TiO2-Chitosan-Berbamine nanocomposites were electrostatically interlocked. The nanocomposites' XRD signals revealed a hexagonal shape. In the DLS spectrum, nanocomposites were found to have a hydrodynamic diameter. As a result of their cytotoxic action, nanocomposites displayed concentration-dependent cytotoxicity. The nanocomposites, like Doxorubicin, caused cell cycle phase arrest in K562 cells. After treatment with IC50 concentrations of CuO-TiO2-Chitosan-Berbamine nanocomposites and Doxorubicin, a substantial percentage of cells were in G2/M stage arrest. Caspase-3, -7, -8, -9, Bax, Bad, Cyt C, and P53 expression were considerably enhanced in K562 cells, whereas Bcl2 expression was decreased, indicating that these cells may have therapeutic potential against human blood cancer/leukemia-derived disorders. As a result, the nanocomposites demonstrated outstanding anticancer potential against leukemic cells. CuO-TiO2-Chitosan-Berbamine, according to our findings.

9.
Contrast Media Mol Imaging ; 2022: 4202623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965620

RESUMEN

S100A4 protein overexpression has been reported in different types of cancer and plays a key role by interacting with the tumor suppressor protein Tp53. Single nucleotide polymorphisms (SNP) in S100A4 could directly influence the biomolecular interaction with the tumor suppressor protein Tp53 due to their aberrant conformations. Hence, the study was designed to predict the deleterious SNP and its effect on the S100A4 protein structure and function. Twenty-one SNP data sets were screened for nonsynonymous mutations and subsequently subjected to deleterious mutation prediction using different computational tools. The screened deleterious mutations were analyzed for their changes in functionality and their interaction with the tumor suppressor protein Tp53 by protein-protein docking analysis. The structural effects were studied using the 3DMissense mutation tool to estimate the solvation energy and torsion angle of the screened mutations on the predicted structures. In our study, 21 deleterious nonsynonymous mutations were screened, including F72V, E74G, L5P, D25E, N65S, A28V, A8D, S20L, L58P, and K26N were found to be remarkably conserved by exhibiting the interaction either with the EF-hand 1 or EF-hand 2 domain. The solvation and torsion values significantly deviated for the mutant-type structures with S20L, N65S, and F72L mutations and showed a marked reduction in their binding affinity with the Tp53 protein. Hence, these deleterious mutations might serve as prospective targets for diagnosing and developing personalized treatments for cancer and other related diseases.


Asunto(s)
Neoplasias , Polimorfismo de Nucleótido Simple , Humanos , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Proteína de Unión al Calcio S100A4/genética
10.
J Immunol Res ; 2022: 7972039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35652109

RESUMEN

Cancer immunotherapies are preferred over conventional treatments which are highly cytotoxic to normal cells. Focus has been on T cells but natural killer (NK) cells have equal potential. Concepts in cancer control and influence of sex require further investigation to improve successful mobilization of immune cells in cancer patients. Acute lymphoblastic leukemia (ALL) is a hematological malignancy mainly of B cell (B-ALL) and T cell (T-ALL) subtypes. Influence of ALL on NK cell is still unclear. Targeted next-generation sequencing was conducted on 62 activating/inhibitory receptors, ligands, effector, and exhaustion molecules on T-ALL (6 males) and normal controls (NC) (4 males and 4 females). Quantitative PCR (q-PCR) further investigated copy number variation (CNV), methylation index (MI), and mRNA expression of significant genes in T-ALL (14 males), NC (12 males and 12 females), and B-ALL samples (N = 12 males and 12 females). Bioinformatics revealed unique variants particularly rs2253849 (T>C) in KLRC1 and rs1141715 (A>G) in KLRC2 only among T-ALL (allele frequency 0.8-1.0). Gene amplification was highest in female B-ALL compared to male B-ALL (KLRC2, KLRC4, and NCR3, p < 0.05) and lowest in male T-ALL cumulating in deletion of KLRD1 and CD69. MI was higher in male ALL of both subtypes compared to normal (KIR2DL1-2 and 4 and KIR2DS2 and 4, p < 0.05) as well as to female B-ALL (KIR3DL2 and KIR2DS2, p < 0.05). mRNA expressions were low. Thus, ALL subtypes potentially regulated NK cell suppression by different mechanisms which should be considered in future immunotherapies for ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Células Asesinas Naturales , Masculino , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , ARN Mensajero/metabolismo , Receptores de Células Asesinas Naturales/genética , Receptores de Células Asesinas Naturales/metabolismo
11.
Nanomaterials (Basel) ; 11(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34947512

RESUMEN

Cancer progresses through a distinctive reprogramming of metabolic pathways directed by genetic and epigenetic modifications. The hardwired changes induced by genetic mutations are resilient, while epigenetic modifications are softwired and more vulnerable to therapeutic intervention. Colon cancer is no different. This gives us the need to explore the mechanism as an attractive therapeutic target to combat colon cancer cells. We have previously established the enhanced therapeutic efficacy of a newly formulated camptothecin encapsulated in ß-cyclodextrin-EDTA-Fe3O4 nanoparticles (CPT-CEF) in colon cancer cells. We furthered this study by carrying out RNA sequencing (RNA-seq) to underscore specific regulatory signatures in the CPT-CEF treated versus untreated HT29 cells. In the study, we identified 95 upregulated and 146 downregulated genes spanning cellular components and molecular and metabolic functions. We carried out extensive bioinformatics analysis to harness genes potentially involved in epigenetic modulation as either the cause or effect of metabolic rewiring exerted by CPT-CEF. Significant downregulation of 13 genes involved in the epigenetic modulation and 40 genes from core metabolism was identified. Three genes, namely, DNMT-1, POLE3, and PKM-2, were identified as the regulatory overlap between epigenetic drivers and metabolic reprogramming in HT29 cells. Based on our results, we propose a possible mechanism that intercepts the two functional axes, namely epigenetic control, and metabolic modulation via CPT-CEF in colon cancer cells, which could skew cancer-induced metabolic deregulation towards metabolic repair. Thus, the study provides avenues for further validation of transcriptomic changes affected by these deregulated genes at epigenetic level, and ultimately may be harnessed as targets for regenerating normal metabolism in colon cancer with better treatment potential, thereby providing new avenues for colon cancer therapy.

12.
Int J Mol Sci ; 22(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34830168

RESUMEN

Cancer cells are able to proliferate in an unregulated manner. There are several mechanisms involved that propel such neoplastic transformations. One of these processes involves bypassing cell death through changes in gene expression and, consequently, cell growth. This involves a complex epigenetic interaction within the cell, which drives it towards oncogenic transformations. These epigenetic events augment cellular growth by potentially altering chromatin structures and influencing key gene expressions. Therapeutic mechanisms have been developed to combat this by taking advantage of the underlying oncogenic mechanisms through chemical modulation. Camptothecin (CPT) is an example of this type of drug. It is a selective topoisomerase I inhibitor that is effective against many cancers, such as colorectal cancer. Previously, we successfully formulated a magnetic nanocarrier-conjugated CPT with ß-cyclodextrin and iron NPs (Fe3O4) cross-linked using EDTA (CPT-CEF). Compared to CPT alone, it boasts higher efficacy due to its selective targeting and increased solubility. In this study, we treated HT29 colon cancer cells with CPT-CEF and attempted to investigate the cytotoxic effects of the formulation through an epigenetic perspective. By using RNA-Seq, several differentially expressed genes were obtained (p < 0.05). Enrichr was then used for the over-representation analysis, and the genes were compared to the epigenetic roadmap and histone modification database. The results showed that the DEGs had a high correlation with epigenetic modifications involving histone H3 acetylation. Furthermore, a subset of these genes was shown to be associated with the Wnt/ß-catenin signaling pathway, which is highly upregulated in a large number of cancer cells. These genes could be investigated as downstream therapeutic targets against the uncontrolled proliferation of cancer cells. Further interaction analysis of the identified genes with the key genes of the Wnt/ß-catenin signaling pathway in colorectal cancer identified the direct interactors and a few transcription regulators. Further analysis in cBioPortal confirmed their genetic alterations and their distribution across patient samples. Thus, the findings of this study reveal that colorectal cancer could be reversed by treatment with the CPT-CEF nanoparticle-conjugated nanocarrier through an epigenetic mechanism.


Asunto(s)
Camptotecina , Neoplasias Colorrectales , Genes Relacionados con las Neoplasias , Histonas , Nanocápsulas , Proteínas de Neoplasias , Vía de Señalización Wnt/efectos de los fármacos , Camptotecina/química , Camptotecina/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Células HT29 , Histonas/genética , Histonas/metabolismo , Humanos , Nanocápsulas/química , Nanocápsulas/uso terapéutico , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
13.
Medicina (Kaunas) ; 57(7)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34356991

RESUMEN

Background and Objectives: Matrix metalloproteinases (MMP) have been implicated as major determinants of tumour growth and metastasis, which are considered two of the main hallmarks of cancer. The interaction of MMP8 and other signalling molecules within and adjacent tumoral tissues, including immune cells, are rather elusive, particularly of adenocarcinoma cell type. In this study, we aimed to investigate the role of MMP8 in non-small cell lung cancer proliferation and invasiveness potential. Materials and Methods: We individually lipofected with two different single guide RNA (sgRNAs) that specifically targeted on MMP8, with CRISPR-Cas 9 protein into the cells. Results: Our results clearly indicated that the lipofection of these complexes could lead to reduced ability of A549 cells to survive and proliferate to form colonies. In addition, when compared to non-transfected cells, the experimental cell groups receiving sgRNAs demonstrated relatively decreased migration rate, hence, wider wound gaps in scratch assay. The quantitative real time-polymerase chain reaction (qRT-PCR) demonstrated significant reduction in the MAP-K, survivin and PI3-K gene expression. MMP8 might have protective roles over tumour growth and spread in our body. Conclusions: The delivery of sgRNAs targeting on the MMP8 gene could induce tumour cell death and arrest cell migratory activity.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , Neoplasias Pulmonares/genética , Metaloproteinasa 8 de la Matriz , Invasividad Neoplásica , ARN Guía de Kinetoplastida
14.
Biomed Pharmacother ; 142: 111974, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34343895

RESUMEN

To date, seven viruses have been reliably connected to various forms of human cancer: Epstein Barr Virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), high-risk Human papillomavirus (HPV), Merkel Cell Polyomavirus (MCPV), Hepatitis B virus (HBV), hepatitis C virus (HCV), and Human T-cell leukemia virus type 1 (HTLV1). This mini-review summarizes two of these viruses, EPV and HTLV-1, in terms of their general pathway of infection, the key mechanism of cancer induction, and the prominent technologies used to detect the infections. EBV is the first discovered human oncovirus and HTLV - I is the first human retrovirus and both were discovered from patient with distinct lymphoma clinical condition. Both the viruses can immortalize lymphocytes invitro and lymphomas are common manifestation of majority oncogenic viruses. Lymphomagenesis are discovered in associated with EBV, HTLV-I, Human Immunodeficiency virus (HIV), Kaposi sarcoma - associated herpes virus and hepatitis c virus. Later the undefined mechanism behind the induction of cancer by these viruses was unveiled gradually along with the responsible cofactors and mimicry mechanism. These two viruses contrast in their genetic structure, location of the infection, and latency, yet clinically, they generate similar cancer disorders. The major focus of this study is to brief the mechanism of these two unrelated viral cancer promoting agents on how they simulate a condition similar to lymphoma which may or may not undergo mimicry and cofactor utilization process, handpicked and vital genes behind the transformation mechanism are given accordingly.


Asunto(s)
Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por HTLV-I/complicaciones , Neoplasias/virología , Carcinogénesis , Infecciones por Virus de Epstein-Barr/virología , Infecciones por HTLV-I/virología , Herpesvirus Humano 4/aislamiento & purificación , Herpesvirus Humano 4/patogenicidad , Virus Linfotrópico T Tipo 1 Humano/aislamiento & purificación , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Humanos , Neoplasias/patología
15.
Front Cell Dev Biol ; 9: 652065, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33937251

RESUMEN

Mesenchymal stem cells (MSC) have shown promise in restoring the vision of patients in clinical trials. However, this therapeutic effect is not observed in every treated patient and is possibly due to the inefficacies of cell delivery and high cell death following transplantation. Utilizing erythropoietin can significantly enhance the regenerative properties of MSCs and hence improve retinal neuron survivability in oxidative stress. Hence, this study aimed to investigate the efficacy of conditioned medium (CM) obtained from transgenic human erythropoietin-expressing MSCs (MSC EPO ) in protecting human retinal pigment epithelial cells from sodium iodate (NaIO3)-induced cell death. Human MSC and MSC EPO were first cultured to obtain conditioned media (CM). The IC50 of NaIO3 in the ARPE-19 culture was then determined by an MTT assay. After that, the efficacy of both MSC-CM and MSC-CM EPO in ARPE-19 cell survival were compared at 24 and 48 h after NaIO3 treatment with MTT. The treatment effects on mitochondrial membrane potential was then measured by a JC-1 flow cytometric assay. The MTT results indicated a corresponding increase in cell survivability (5-58%) in the ARPE-19 cell cultures. In comparison to MSC-CM, the use of conditioned medium collected from the MSC-CM EPO further enhanced the rate of ARPE-19 survivability at 24 h (P < 0.05) and 48 h (P < 0.05) in the presence of NaIO3. Furthermore, more than 90% were found viable with the JC-1 assay after MSC-CM EPO treatment, showing a positive implication on the mitochondrial dynamics of ARPE-19. The MSC-CM EPO provided an enhanced mitigating effect against NaIO3-induced ARPE-19 cell death over that of MSC-CM alone during the early phase of the treatment, and it may act as a future therapy in treating retinal degenerative diseases.

16.
Front Cell Dev Biol ; 9: 652017, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33987180

RESUMEN

Mesenchymal stem cells (MSC) are highly regarded as a potential treatment for retinal degenerative disorders like retinitis pigmentosa and age-related macular degeneration. However, donor cell heterogeneity and inconsistent protocols for transplantation have led to varied outcomes in clinical trials. We previously showed that genetically-modifying MSCs to express erythropoietin (MSCEPO) improved its regenerative capabilities in vitro. Hence, in this study, we sought to prove its potential in vivo by transplanting MSCsEPO in a rat retinal degeneration model and analyzing its retinal transcriptome using RNA-Seq. Firstly, MSCsEPO were cultured and expanded before being intravitreally transplanted into the sodium iodate-induced model. After the procedure, electroretinography (ERG) was performed bi-weekly for 30 days. Histological analyses were performed after the ERG assessment. The retina was then harvested for RNA extraction. After mRNA-enrichment and library preparation, paired-end RNA-Seq was performed. Salmon and DESeq2 were used to process the output files. The generated dataset was then analyzed using over-representation (ORA), functional enrichment (GSEA), and pathway topology analysis tools (SPIA) to identify enrichment of key pathways in the experimental groups. The results showed that the MSCEPO-treated group had detectable ERG waves (P <0.05), which were indicative of successful phototransduction. The stem cells were also successfully detected by immunohistochemistry 30 days after intravitreal transplantation. An initial over-representation analysis revealed a snapshot of immune-related pathways in all the groups but was mainly overexpressed in the MSC group. A subsequent GSEA and SPIA analysis later revealed enrichment in a large number of biological processes including phototransduction, regeneration, and cell death (Padj <0.05). Based on these pathways, a set of pro-survival gene expressions were extracted and tabulated. This study provided an in-depth transcriptomic analysis on the MSCEPO-treated retinal degeneration model as well as a profile of pro-survival genes that can be used as candidates for further genetic enhancement studies on stem cells.

17.
Exp Biol Med (Maywood) ; 246(10): 1177-1183, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33535809

RESUMEN

Osteoblasts play an important role in bone regeneration and repair. The hypoxia condition in bone occurs when bone undergoes fracture, and this will trigger a series of biochemical and mechanical changes to enable bone repair. Hence, it is interesting to observe the metabolites and metabolism changes when osteoblasts are exposed to hypoxic condition. This study has looked into the response of human osteoblast hFOB 1.19 under normoxic and hypoxic conditions by observing the cell growth and utilization of metabolites via Phenotype MicroArrays™ under these two different oxygen concentrations. The cell growth of hFOB 1.19 under hypoxic condition showed better growth compared to hFOB 1.19 under normal condition. In this study, osteoblast used glycolysis as the main pathway to produce energy as hFOB 1.19 in both hypoxic and normoxic conditions showed cell growth in well containing dextrin, glycogen, maltotriose, D-maltose, D-glucose-6-phospate, D-glucose, D-mannose, D-Turanose, D-fructose-6-phosphate, D-galactose, uridine, adenosine, inosine and α-keto-glutaric acid. In hypoxia, the cells have utilized additional metabolites such as α-D-glucose-1-phosphate and D-fructose, indicating possible activation of glycogen synthesis and glycogenolysis to metabolize α-D-glucose-1-phosphate. Meanwhile, during normoxia, D-L-α-glycerol phosphate was used, and this implies that the osteoblast may use glycerol-3-phosphate shuttle and oxidative phosphorylation to metabolize glycerol-3-phosphate.


Asunto(s)
Feto/patología , Análisis por Micromatrices , Osteoblastos/patología , Hipoxia de la Célula , Línea Celular , Supervivencia Celular , Humanos , Osteoblastos/metabolismo , Fenotipo
18.
J Photochem Photobiol B ; 203: 111727, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31862637

RESUMEN

Blindness and vision impairment are caused by irremediable retinal degeneration in affected individuals worldwide. Cell therapy for a retinal replacement can potentially rescue their vision, specifically for those who lost the light sensing photoreceptors in the eye. As such, well-characterized retinal cells are required for the replacement purposes. Stem cell-based therapy in photoreceptor and retinal pigment epithelium transplantation is well received, however, the drawbacks of retinal transplantation is the limited clinical protocols development, insufficient number of transplanted cells for recovery, the selection of potential stem cell sources that can be differentiated into the target cells, and the ability of cells to migrate to the host tissue. Dental pulp stem cells (DPSC) belong to a subset of mesenchymal stem cells, and are recently being studied due to its high capability of differentiating into cells of the neuronal lineage. In this review, we look into the potential uses of DPSC in treating retinal degeneration, and also the current data supporting its application.


Asunto(s)
Pulpa Dental/citología , Degeneración Retiniana/terapia , Trasplante de Células Madre , Humanos , Células Fotorreceptoras/fisiología , Retina/fisiología , Células Madre/citología
19.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974904

RESUMEN

Multipotent mesenchymal stem cells (MSCs) have been employed in numerous pre-clinical and clinical settings for various diseases. MSCs have been used in treating degenerative disorders pertaining to the eye, for example, age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and optic neuritis. Despite the known therapeutic role and mechanisms of MSCs, low cell precision towards the targeted area and cell survivability at tissue needing repair often resulted in a disparity in therapeutic outcomes. In this review, we will discuss the current and feasible strategy options to enhance treatment outcomes with MSC therapy. We will review the application of various types of biomaterials and advances in nanotechnology, which have been employed on MSCs to augment cellular function and differentiation for improving treatment of visual functions. In addition, several modes of gene delivery into MSCs and the types of associated therapeutic genes that are important for modulation of ocular tissue function and repair will be highlighted.


Asunto(s)
Retinopatía Diabética , Glaucoma , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Neuritis Óptica , Retinitis Pigmentosa , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Retinopatía Diabética/terapia , Glaucoma/metabolismo , Glaucoma/patología , Glaucoma/terapia , Humanos , Células Madre Mesenquimatosas/patología , Neuritis Óptica/metabolismo , Neuritis Óptica/patología , Neuritis Óptica/terapia , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Retinitis Pigmentosa/terapia
20.
Regen Ther ; 9: 100-110, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30525080

RESUMEN

INTRODUCTION: Anti-tuberculosis agent rifampicin is extensively used for its effectiveness. Possible complications of tuberculosis and prolonged rifampicin treatment include kidney damage; these conditions can lead to reduced efficiency of the affected kidney and consequently to other diseases. Bone marrow-derived mesenchymal stem cells (BMMSCs) can be used in conjunction with rifampicin to avert kidney damage; because of its regenerative and differentiating potentials into kidney cells. This research was designed to assess the modulatory and regenerative potentials of MSCs in averting kidney damage due to rifampicin-induced kidney toxicity in Wistar rats and their progenies. BMMSCs used in this research were characterized according to the guidelines of International Society for Cellular Therapy. METHODS: The rats (male and female) were divided into three experimental groups, as follows: Group 1: control rats (4 males & 4 females); Group 2: rats treated with rifampicin only (4 males & 4 females); and Group 3: rats treated with rifampicin plus MSCs (4 males & 4 females). Therapeutic doses of rifampicin (9 mg/kg/day for 3-months) and MSCs infusions (twice/month for 3-months) were administered orally and intravenously respectively. At the end of the three months, the animals were bred together to determine if the effects would carry over to the next generation. Following breeding, the rats were sacrificed to harvest serum for biochemical analysis and the kidneys were also harvested for histological analysis and quantification of the glomeruli size, for the adult rats and their progenies. RESULTS: The results showed some level of alterations in the biochemical indicators and histopathological damage in the rats that received rifampicin treatment alone, while the control and stem cells treated group showed apparently normal to nearly normal levels of both bio-indicators and normal histological architecture. CONCLUSIONS: Intravenous administration of MSCs yielded sensible development, as seen from biochemical indicators, histology and the quantitative cell analysis, hence implying the modulatory and regenerative properties of MSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA