Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biomech ; 47(9): 2189-96, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24267271

RESUMEN

Functional tissue engineering of connective tissues such as the anterior cruciate ligament (ACL) remains a significant clinical challenge, largely due to the need for mechanically competent scaffold systems for grafting, as well as a reliable cell source for tissue formation. We have designed an aligned, polylactide-co-glycolide (PLGA) nanofiber-based scaffold with physiologically relevant mechanical properties for ligament regeneration. The objective of this study is to identify optimal tissue engineering strategies for fibroblastic induction of human mesenchymal stem cells (hMSC), testing the hypothesis that basic fibroblast growth factor (bFGF) priming coupled with tensile loading will enhance hMSC-mediated ligament regeneration. It was observed that compared to the unloaded, as well as growth factor-primed but unloaded controls, bFGF stimulation followed by physiologically relevant tensile loading enhanced hMSC proliferation, collagen production and subsequent differentiation into ligament fibroblast-like cells, upregulating the expression of types I and III collagen, as well as tenasin-C and tenomodulin. The results of this study suggest that bFGF priming increases cell proliferation, while mechanical stimulation of the hMSCs on the aligned nanofiber scaffold promotes fibroblastic induction of these cells. In addition to demonstrating the potential of nanofiber scaffolds for hMSC-mediated functional ligament tissue engineering, this study yields new insights into the interactive effects of chemical and mechanical stimuli on stem cell differentiation.


Asunto(s)
Ligamento Cruzado Anterior/fisiología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Nanofibras , Andamios del Tejido , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Humanos , Ácido Láctico , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Regeneración , Estrés Mecánico , Tenascina/metabolismo , Ingeniería de Tejidos
2.
Biomaterials ; 34(8): 1942-53, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23245926

RESUMEN

Mesenchymal stem cells (MSC) represent a promising and clinically relevant cell source for tissue engineering applications. As such, guiding MSCs toward specific lineages and maintaining these phenotypes have been particularly challenging as the contributions of mechanical, chemical and structural cues to the complex differentiation process are largely unknown. To fully harness the potential of MSCs for regenerative medicine, a systematic investigation into the individual and combined effects of these stimuli is needed. In addition, unlike chemical stimulation, for which temporal and concentration gradients are difficult to control, mechanical stimulation and scaffold-based cues may be relatively more biomimetic and can be applied with greater control to ensure fidelity in MSC differentiation. The objective of this study is to investigate the role of nanofiber matrix alignment and mechanical stimulation on MSC differentiation, focusing on elucidating the relative contribution of each parameter in guided regeneration of functional connective tissues. It is observed that nanofiber alignment directs MSC response to physiological loading and that fibroblastic differentiation requires a combination of physiologically-relevant cell-material interactions in conjunction with mechanical stimulation. Importantly, the results of this study reveal that systemic and readily controllable cues, such as scaffold alignment and optimized mechanical stimulation, are sufficient to drive MSC differentiation, without the need for additional chemical stimuli. Moreover, these findings yield a set of fundamental design rules that can be readily applied to connective tissue regeneration strategies.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/citología , Nanofibras/química , Estrés Mecánico , Reactores Biológicos , Adhesión Celular , Proliferación Celular , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Humanos , Integrinas/genética , Integrinas/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Nanofibras/ultraestructura , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Andamios del Tejido/química , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA