Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Mol Neurosci ; 16: 1135015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465367

RESUMEN

The vacuolar-type ATPase (V-ATPase) is a multisubunit protein composed of the cytosolic adenosine triphosphate (ATP) hydrolysis catalyzing V1 complex, and the integral membrane complex, Vo, responsible for proton translocation. The largest subunit of the Vo complex, subunit a, enables proton translocation upon ATP hydrolysis, mediated by the cytosolic V1 complex. Four known subunit a isoforms (a1-a4) are expressed in different cellular locations. Subunit a1 (also known as Voa1), the neural isoform, is strongly expressed in neurons and is encoded by the ATP6V0A1 gene. Global knockout of this gene in mice causes embryonic lethality, whereas pyramidal neuron-specific knockout resulted in neuronal cell death with impaired spatial and learning memory. Recently reported, de novo and biallelic mutations of the human ATP6V0A1 impair autophagic and lysosomal activities, contributing to neuronal cell death in developmental and epileptic encephalopathies (DEE) and early onset progressive myoclonus epilepsy (PME). The de novo heterozygous R740Q mutation is the most recurrent variant reported in cases of DEE. Homology studies suggest R740 deprotonates protons from specific glutamic acid residues in subunit c, highlighting its importance to the overall V-ATPase function. In this paper, we discuss the structure and mechanism of the V-ATPase, emphasizing how mutations in subunit a1 can lead to lysosomal and autophagic dysfunction in neurodevelopmental disorders, and how mutations to the non-neural isoforms, a2-a4, can also lead to various genetic diseases. Given the growing discovery of disease-causing variants of V-ATPase subunit a and its function as a pump-based regulator of intracellular organelle pH, this multiprotein complex warrants further investigation.

2.
Inflammation ; 43(2): 744-751, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31897916

RESUMEN

Mast cell activation triggers intricate signaling pathways that promote the expression and/or release of a wide range of mediators including tumor necrosis factor (TNF; also known as TNFα). In this study, we investigated the connection between TNF secretion and TNF production, exploiting RBL-2H3 cells (a tumor analog of mucosal mast cells) that are depleted of Munc13-4, a crucial component of the mast cell exocytic machinery. We showed that antigen/IgE elicited robust TNF production in RBL-2H3 cells, but not in Munc13-4 knockout cells. The production defect was corrected when Munc13-4 was reintroduced into the knockout cell line, suggesting that the phenotype was not caused by any secondary effect derived from the knockout approach. Furthermore, pre-incubation of RBL-2H3 cells with R-7050, an antagonist of TNF receptor-dependent signaling, was shown to block TNF production without inhibiting TNF release. These observations provide fresh evidence for a robust feed-back loop to boost TNF production in activated mast cells.


Asunto(s)
Mastocitos/metabolismo , Proteínas de la Membrana/deficiencia , Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Degranulación de la Célula/efectos de los fármacos , Degranulación de la Célula/fisiología , Técnicas de Inactivación de Genes , Mastocitos/efectos de los fármacos , Proteínas de la Membrana/genética , Ratones , Quinoxalinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Triazoles/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/genética
3.
J Immunol ; 201(2): 700-713, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29884704

RESUMEN

In the immune system, degranulation/exocytosis from lymphocytes is crucial for life through facilitating eradication of infected and malignant cells. Dysfunction of the NK cell exocytosis process has been implicated with devastating immune diseases, such as familial hemophagocytic lymphohistiocytosis, yet the underlying molecular mechanisms of such processes have remained elusive. In particular, although the lytic granule exocytosis from NK cells is strictly Ca2+-dependent, the molecular identity of the Ca2+ sensor has yet to be identified. In this article, we show multiple lines of evidence in which point mutations in aspartic acid residues in both C2 domains of human Munc13-4, whose mutation underlies familial hemophagocytic lymphohistiocytosis type 3, diminished exocytosis with dramatically altered Ca2+ sensitivity in both mouse primary NK cells as well as rat mast cell lines. Furthermore, these mutations within the C2 domains severely impaired NK cell cytotoxicity against malignant cells. Total internal reflection fluorescence microscopy analysis revealed that the mutations strikingly altered Ca2+ dependence of fusion pore opening of each single granule and frequency of fusion events. Our results demonstrate that both C2 domains of Munc13-4 play critical roles in Ca2+-dependent exocytosis and cytotoxicity by regulating single-granule membrane fusion dynamics in immune cells.


Asunto(s)
Células Asesinas Naturales/inmunología , Linfohistiocitosis Hemofagocítica/inmunología , Mastocitos/inmunología , Proteínas de la Membrana/metabolismo , Vesículas Secretoras/metabolismo , Animales , Ácido Aspártico/genética , Señalización del Calcio , Degranulación de la Célula , Células Cultivadas , Citotoxicidad Inmunológica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación/genética , Dominios Proteicos/genética , Ratas
4.
EBioMedicine ; 16: 262-274, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28163042

RESUMEN

Reduced pancreatic islet levels of Munc18a/SNARE complex proteins have been postulated to contribute to the deficient glucose-stimulated insulin secretion (GSIS) in type-2 diabetes (T2D). Whereas much previous work has purported Munc18a/SNARE complex (Syntaxin-1A/VAMP-2/SNAP25) to be primarily involved in predocked secretory granule (SG) fusion, less is known about newcomer SGs that undergo minimal docking time at the plasma membrane before fusion. Newcomer SG fusion has been postulated to involve a distinct SM/SNARE complex (Munc18b/Syntaxin-3/VAMP8/SNAP25), whose levels we find also reduced in islets of T2D humans and T2D Goto-Kakizaki (GK) rats. Munc18b overexpression by adenovirus infection (Ad-Munc18b), by increasing assembly of Munc18b/SNARE complexes, mediated increased fusion of not only newcomer SGs but also predocked SGs in T2D human and GK rat islets, resulting in rescue of the deficient biphasic GSIS. Infusion of Ad-Munc18b into GK rat pancreas led to sustained improvement in glucose homeostasis. However, Munc18b overexpression in normal islets increased only newcomer SG fusion. Therefore, Munc18b could potentially be deployed in human T2D to rescue the deficient GSIS.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Proteínas Munc18/metabolismo , Anciano , Animales , Western Blotting , Diabetes Mellitus Tipo 2/genética , Femenino , Humanos , Secreción de Insulina , Masculino , Microscopía Confocal , Persona de Mediana Edad , Complejos Multiproteicos/metabolismo , Proteínas Munc18/genética , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Ratas Endogámicas , Proteína 25 Asociada a Sinaptosomas/metabolismo
5.
Curr Biol ; 27(3): 408-414, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-28089515

RESUMEN

Eukaryotic plasma membrane organization theory has long been controversial, in part due to a dearth of suitably high-resolution techniques to probe molecular architecture in situ and integrate information from diverse data streams [1]. Notably, clustered patterning of membrane proteins is a commonly conserved feature across diverse protein families (reviewed in [2]), including the SNAREs [3], SM proteins [4, 5], ion channels [6, 7], and receptors (e.g., [8]). Much effort has gone into analyzing the behavior of secretory organelles [9-13], and understanding the relationship between the membrane and proximal organelles [4, 5, 12, 14] is an essential goal for cell biology as broad concepts or rules may be established. Here we explore the generally accepted model that vesicles at the plasmalemma are guided by cytoskeletal tracks to specific sites on the membrane that have clustered molecular machinery for secretion [15], organized in part by the local lipid composition [16]. To increase our understanding of these fundamental processes, we integrated nanoscopy and spectroscopy of the secretory machinery with organelle tracking data in a mathematical model, iterating with knockdown cell models. We find that repeated routes followed by successive vesicles, the re-use of similar fusion sites, and the apparently distinct vesicle "pools" are all fashioned by the Brownian behavior of organelles overlaid on navigation between non-reactive secretory protein molecular depots patterned at the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Exocitosis/fisiología , Fusión de Membrana/fisiología , Orgánulos/metabolismo , Vesículas Secretoras/metabolismo , Animales , Transporte Biológico , Células PC12 , Ratas , Proteínas SNARE/metabolismo
6.
Anesthesiology ; 124(4): 878-84, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26808630

RESUMEN

BACKGROUND: Propofol (2,6-diisopropylphenol) is one of the most frequently used anesthetic agents. One of the main side effects of propofol is to reduce blood pressure, which is thought to occur by inhibiting the release of catecholamines from sympathetic neurons. Here, the authors hypothesized that propofol-induced hypotension is not simply the result of suppression of the release mechanisms for catecholamines. METHODS: The authors simultaneously compared the effects of propofol on the release of norepinephrine triggered by high K-induced depolarization, as well as ionomycin, by using neuroendocrine PC12 cells and synaptosomes. Ionomycin, a Ca ionophore, directly induces Ca influx, thus bypassing the effect of ion channel modulation by propofol. RESULTS: Propofol decreased depolarization (high K)-triggered norepinephrine release, whereas it increased ionomycin-triggered release from both PC12 cells and synaptosomes. The propofol (30 µM)-induced increase in norepinephrine release triggered by ionomycin was dependent on both the presence and the concentration of extracellular Ca (0.3 to 10 mM; n = 6). The enhancement of norepinephrine release by propofol was observed in all tested concentrations of ionomycin (0.1 to 5 µM; n = 6). CONCLUSIONS: Propofol at clinically relevant concentrations promotes the catecholamine release as long as Ca influx is supported. This unexpected finding will allow for a better understanding in preventing propofol-induced hypotension.


Asunto(s)
Calcio/metabolismo , Catecolaminas/metabolismo , Hipnóticos y Sedantes/farmacología , Propofol/farmacología , Animales , Células Cultivadas , Humanos , Ionomicina/metabolismo , Norepinefrina/metabolismo , Células PC12/metabolismo , Ratas , Sinaptosomas/metabolismo
7.
Mol Biol Cell ; 27(4): 669-85, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26700321

RESUMEN

Syntaxin-1 is the central SNARE protein for neuronal exocytosis. It interacts with Munc18-1 through its cytoplasmic domains, including the N-terminal peptide (N-peptide). Here we examine the role of the N-peptide binding in two conformational states ("closed" vs. "open") of syntaxin-1 using PC12 cells and Caenorhabditis elegans. We show that expression of "closed" syntaxin-1A carrying N-terminal single point mutations (D3R, L8A) that perturb interaction with the hydrophobic pocket of Munc18-1 rescues impaired secretion in syntaxin-1-depleted PC12 cells and the lethality and lethargy of unc-64 (C. elegans orthologue of syntaxin-1)-null mutants. Conversely, expression of the "open" syntaxin-1A harboring the same mutations fails to rescue the impairments. Biochemically, the L8A mutation alone slightly weakens the binding between "closed" syntaxin-1A and Munc18-1, whereas the same mutation in the "open" syntaxin-1A disrupts it. Our results reveal a striking interplay between the syntaxin-1 N-peptide and the conformational state of the protein. We propose that the N-peptide plays a critical role in intracellular trafficking of syntaxin-1, which is dependent on the conformational state of this protein. Surprisingly, however, the N-peptide binding mode seems dispensable for SNARE-mediated exocytosis per se, as long as the protein is trafficked to the plasma membrane.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Exocitosis , Proteínas Munc18/metabolismo , Neuronas/fisiología , Sintaxina 1/química , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Técnicas de Silenciamiento del Gen , Datos de Secuencia Molecular , Neuronas/metabolismo , Células PC12 , Péptidos/química , Péptidos/metabolismo , Mutación Puntual , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Sintaxina 1/genética , Sintaxina 1/metabolismo
8.
J Biol Chem ; 288(32): 23050-63, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23801330

RESUMEN

Calcium-dependent activator protein for secretion 1 (CAPS1) is a multidomain protein containing a Munc13 homology domain 1 (MHD1). Although CAPS1 and Munc13-1 play crucial roles in the priming stage of secretion, their functions are non-redundant. Similar to Munc13-1, CAPS1 binds to syntaxin-1, a key t-SNARE protein in neurosecretion. However, whether CAPS1 interacts with syntaxin-1 in a similar mode to Munc13-1 remains unclear. Here, using yeast two-hybrid assays followed by biochemical binding experiments, we show that the region in CAPS1 consisting of the C-terminal half of the MHD1 with the corresponding C-terminal region can bind to syntaxin-1. Importantly, the binding mode of CAPS1 to syntaxin-1 is distinct from that of Munc13-1; CAPS1 binds to the full-length of cytoplasmic syntaxin-1 with preference to its "open" conformation, whereas Munc13-1 binds to the first 80 N-terminal residues of syntaxin-1. Unexpectedly, the majority of the MHD1 of CAPS1 is dispensable, whereas the C-terminal 69 residues are crucial for the binding to syntaxin-1. Functionally, a C-terminal truncation of 69 or 134 residues in CAPS1 abolishes its ability to reconstitute secretion in permeabilized PC12 cells. Our results reveal a novel mode of binding between CAPS1 and syntaxin-1, which play a crucial role in neurosecretion. We suggest that the distinct binding modes between CAPS1 and Munc13-1 can account for their non-redundant functions in neurosecretion. We also propose that the preferential binding of CAPS1 to open syntaxin-1 can contribute to the stabilization of the open state of syntaxin-1 during its transition from "closed" state to the SNARE complex formation.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurosecreción/fisiología , Sintaxina 1/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Células HEK293 , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Células PC12 , Mapeo Peptídico , Unión Proteica/fisiología , Estabilidad Proteica , Estructura Terciaria de Proteína , Ratas , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/genética , Sintaxina 1/genética , Técnicas del Sistema de Dos Híbridos
9.
J Cell Sci ; 126(Pt 11): 2353-60, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23761923

RESUMEN

Munc18-1 plays a dual role in transporting syntaxin-1A (Sx1a) to the plasma membrane and regulating SNARE-mediated membrane fusion. As impairment of either function leads to a common exocytic defect, assigning specific roles for various Munc18-1 domains has proved difficult. Structural analyses predict that a loop region in Munc18-1 domain 3a could catalyse the conversion of Sx1a from a 'closed', fusion-incompetent to an 'open', fusion-competent conformation. As this conversion occurs at the plasma membrane, mutations in this loop could potentially separate the chaperone and exocytic functions of Munc18-1. Expression of a Munc18-1 deletion mutant lacking 17 residues of the domain 3a loop (Munc18-1(Δ317-333)) in PC12 cells deficient in endogenous Munc18 (DKD-PC12 cells) fully rescued transport of Sx1a to the plasma membrane, but not exocytic secretory granule fusion. In vitro binding of Munc18-1(Δ317-333) to Sx1a was indistinguishable from that of full-length Munc18-1, consistent with the critical role of the closed conformation in Sx1a transport. However, in DKD-PC12 cells, Munc18-1(Δ317-333) binding to Sx1a was greatly reduced compared to that of full-length Munc18-1, suggesting that closed conformation binding contributes little to the overall interaction at the cell surface. Furthermore, we found that Munc18-1(Δ317-333) could bind SNARE complexes in vitro, suggesting that additional regulatory factors underpin the exocytic function of Munc18-1 in vivo. Together, these results point to a defined role for Munc18-1 in facilitating exocytosis linked to the loop region of domain 3a that is clearly distinct from its function in Sx1a transport.


Asunto(s)
Membrana Celular/metabolismo , Exocitosis/fisiología , Proteínas Munc18/metabolismo , Sintaxina 1/metabolismo , Animales , Membrana Celular/genética , Humanos , Proteínas Munc18/genética , Células PC12 , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Ratas , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sintaxina 1/genética
10.
J Cell Sci ; 126(Pt 11): 2361-71, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23525015

RESUMEN

Munc18-1 is believed to prime or stimulate SNARE-mediated membrane fusion/exocytosis through binding to the SNARE complex, in addition to chaperoning its cognate syntaxins. Nevertheless, a Munc18-1 mutant that selectively loses the priming function while retaining the syntaxin chaperoning activity has not been identified. As a consequence, the mechanism that mediates Munc18-1-dependent priming remains unclear. In the course of analyzing the functional outcomes of a variety of point mutations in domain 3a of Munc18-1, we discovered insertion mutants (K332E/K333E with insertions of 5 or 39 residues). These mutants completely lose their ability to rescue secretion whereas they effectively restore syntaxin-1 expression at the plasma membrane as well as dense-core vesicle docking in Munc18-1 and Munc18-2 double-knockdown PC12 cells. The mutants can bind syntaxin-1A in a stoichiometric manner. However, binding to the SNARE complex is impaired compared with the wild type or the hydrophobic pocket mutant (F115E). Our results suggest that the domain 3a of Munc18-1 plays a crucial role in priming of exocytosis, which is independent of its syntaxin-1 chaperoning activity and is downstream of dense-core vesicle docking. We also suggest that the priming mechanism of Munc18-1 involves its domain-3a-dependent interaction with the SNARE complex.


Asunto(s)
Exocitosis/fisiología , Fusión de Membrana/fisiología , Proteínas Munc18/metabolismo , Proteínas SNARE/metabolismo , Animales , Proteínas Munc18/genética , Células PC12 , Mutación Puntual , Estructura Terciaria de Proteína , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Ratas , Proteínas SNARE/genética
11.
Proc Natl Acad Sci U S A ; 110(12): 4610-5, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23487749

RESUMEN

The function of the Munc18-1 protein hydrophobic pocket, which interacts with the syntaxin-1 N-terminal peptide, has been highly controversial in neurosecretion. Recent analysis of patients with familial hemophagocytic lymphohistiocytosis type 5 has identified the E132A mutation in the hydrophobic pocket of Munc18-2, prompting us to examine the role of this region in the context of immune cell secretion. Double knockdown of Munc18-1 and Munc18-2 in RBL-2H3 mast cells eliminates both IgE-dependent and ionomycin-induced degranulation and causes a significant reduction in syntaxin-11 without altering expressions of the other syntaxin isoforms examined. These phenotypes were effectively rescued on reexpression of wild-type Munc18-1 or Munc18-2 but not the mutants (F115E, E132A, and F115E/E132A) in the hydrophobic pocket of Munc18. In addition, these mutants show that they are unable to directly interact with syntaxin-11, as tested through protein interaction experiments. Our results demonstrate the crucial roles of the hydrophobic pocket of Munc18 in mast cell degranulation, which include the regulation of syntaxin-11. We also suggest that the functional importance of this region is significantly different between neuronal and immune cell exocytosis.


Asunto(s)
Degranulación de la Célula , Linfohistiocitosis Hemofagocítica/metabolismo , Mastocitos/metabolismo , Proteínas Munc18/metabolismo , Sustitución de Aminoácidos , Animales , Ionóforos de Calcio/farmacología , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inmunoglobulina E/metabolismo , Inmunoglobulina E/farmacología , Ionomicina/farmacología , Linfohistiocitosis Hemofagocítica/genética , Linfohistiocitosis Hemofagocítica/patología , Mastocitos/patología , Ratones , Proteínas Munc18/genética , Mutación Missense , Células PC12 , Estructura Terciaria de Proteína , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Ratas
12.
Mol Biol Cell ; 22(21): 4134-49, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21900502

RESUMEN

Munc18-1 plays pleiotropic roles in neurosecretion by acting as 1) a molecular chaperone of syntaxin-1, 2) a mediator of dense-core vesicle docking, and 3) a priming factor for soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated membrane fusion. However, how these functions are executed and whether they are correlated remains unclear. Here we analyzed the role of the domain-1 cleft of Munc18-1 by measuring the abilities of various mutants (D34N, D34N/M38V, K46E, E59K, K46E/E59K, K63E, and E66A) to bind and chaperone syntaxin-1 and to restore the docking and secretion of dense-core vesicles in Munc18-1/-2 double-knockdown cells. We identified striking correlations between the abilities of these mutants to bind and chaperone syntaxin-1 with their ability to restore vesicle docking and secretion. These results suggest that the domain-1 cleft of Munc18-1 is essential for binding to syntaxin-1 and thereby critical for its chaperoning, docking, and secretory functions. Our results demonstrate that the effect of the alleged priming mutants (E59K, D34N/M38V) on exocytosis can largely be explained by their reduced syntaxin-1-chaperoning functions. Finally, our data suggest that the intracellular expression and distribution of syntaxin-1 determines the level of dense-core vesicle docking.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Munc18/metabolismo , Transporte de Proteínas , Vesículas Secretoras/metabolismo , Sintaxina 1/metabolismo , Sustitución de Aminoácidos , Animales , Calorimetría , Expresión Génica , Humanos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Munc18/genética , Norepinefrina/metabolismo , Células PC12 , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas , Vesículas Secretoras/ultraestructura , Sintaxina 1/genética , Termodinámica , Volumetría
13.
Mol Biol Cell ; 22(18): 3394-409, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21795392

RESUMEN

The Vo sector of the vacuolar H(+)-ATPase is a multisubunit complex that forms a proteolipid pore. Among the four isoforms (a1-a4) of subunit Voa, the isoform(s) critical for secretory vesicle acidification have yet to be identified. An independent function of Voa1 in exocytosis has been suggested. Here we investigate the function of Voa isoforms in secretory vesicle acidification and exocytosis by using neurosecretory PC12 cells. Fluorescence-tagged and endogenous Voa1 are primarily localized on secretory vesicles, whereas fluorescence-tagged Voa2 and Voa3 are enriched on the Golgi and early endosomes, respectively. To elucidate the functional roles of Voa1 and Voa2, we engineered PC12 cells in which Voa1, Voa2, or both are stably down-regulated. Our results reveal significant reductions in the acidification and transmitter uptake/storage of dense-core vesicles by knockdown of Voa1 and more dramatically of Voa1/Voa2 but not of Voa2. Overexpressing knockdown-resistant Voa1 suppresses the acidification defect caused by the Voa1/Voa2 knockdown. Unexpectedly, Ca(2+)-dependent peptide secretion is largely unaffected in Voa1 or Voa1/Voa2 knockdown cells. Our data demonstrate that Voa1 and Voa2 cooperatively regulate the acidification and transmitter uptake/storage of dense-core vesicles, whereas they might not be as critical for exocytosis as recently proposed.


Asunto(s)
Neurotransmisores/metabolismo , Norepinefrina/metabolismo , Subunidades de Proteína/metabolismo , Vesículas Secretoras/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Dopamina/metabolismo , Endosomas/metabolismo , Técnicas de Silenciamiento del Gen , Concentración de Iones de Hidrógeno , Fusión de Membrana , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Células PC12 , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/genética , Transporte de Proteínas , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Vesículas Secretoras/química , Sinaptotagminas/metabolismo , Regulación hacia Arriba , ATPasas de Translocación de Protón Vacuolares/genética
14.
J Neurosci ; 30(17): 6116-21, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20427669

RESUMEN

Changes in membrane cholesterol content can alter protein kinase activity, however, it is not known whether kinases regulating transmitter release are sensitive to membrane cholesterol content. Here we have used the cholesterol extracting agent methyl-beta-cyclodextrin to measure the effects of acute cholesterol reduction on transmitter release from cultured cerebellar neurons. Cholesterol depletion increased the frequency of spontaneous transmitter release without altering the amplitude and time course of mEPSCs. Evoked transmitter release was decreased by cholesterol extraction and the paired pulse ratio was also decreased. Alterations in synaptic transmission were not associated with failure of action potential generation or changes in presynaptic Ca(2+) signaling. Both the increase in mEPSC frequency and the change in paired pulse ratio were blocked by the broad spectrum protein kinase inhibitor staurosporine. The increase in mEPSC frequency was also sensitive to selective inhibitors of PKC and PKA. Our results therefore demonstrate that the activity of presynaptic protein kinases that regulate spontaneous and evoked neurotransmitter release is sensitive to changes of membrane cholesterol content.


Asunto(s)
Cerebelo/fisiología , Colesterol/metabolismo , Neuronas/fisiología , Neurotransmisores/metabolismo , Fosfotransferasas/metabolismo , Sinapsis/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Antimetabolitos/farmacología , Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Neuronas/efectos de los fármacos , Fosfotransferasas/antagonistas & inhibidores , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/enzimología , Terminales Presinápticos/fisiología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Estaurosporina/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/enzimología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , beta-Ciclodextrinas/farmacología
15.
Mol Biol Cell ; 20(23): 4962-75, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19812250

RESUMEN

Munc18-1 binds to syntaxin-1A via two distinct sites referred to as the "closed" conformation and N terminus binding. The latter has been shown to stimulate soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated exocytosis, whereas the former is believed to be inhibitory or dispensable. To precisely define the contributions of each binding mode, we have engineered Munc18-1/-2 double knockdown neurosecretory cells and show that not only syntaxin-1A and -1B but also syntaxin-2 and -3 are significantly reduced as a result of Munc18-1 and -2 knockdown. Syntaxin-1 was mislocalized and the regulated secretion was abolished. We next examined the abilities of Munc18-1 mutants to rescue the defective phenotypes. Mutation (K46E/E59K) of Munc18-1 that selectively prevents binding to closed syntaxin-1 was unable to restore syntaxin-1 expression, localization, or secretion. In contrast, mutations (F115E/E132A) of Munc18-1 that selectively impair binding to the syntaxin-1 N terminus could still rescue the defective phenotypes. Our results indicate that Munc18-1 and -2 act in concert to support the expression of a broad range of syntaxins and to deliver syntaxin-1 to the plasma membrane. Our studies also indicate that the binding to the closed conformation of syntaxin is essential for Munc18-1 stimulatory action, whereas the binding to syntaxin N terminus plays a more limited role in neurosecretory cells.


Asunto(s)
Proteínas Munc18/química , Proteínas Munc18/metabolismo , Estructura Terciaria de Proteína , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/metabolismo , Animales , Sitios de Unión , Técnicas de Silenciamiento del Gen , Humanos , Modelos Moleculares , Proteínas Munc18/genética , Mutación , Células PC12 , Fenotipo , Unión Proteica , Proteínas/genética , Proteínas/metabolismo , Proteínas Qa-SNARE/genética , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Vesículas Secretoras/metabolismo , Termodinámica , Técnicas del Sistema de Dos Híbridos
16.
J Biol Chem ; 284(32): 21637-46, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19483085

RESUMEN

Neuronal communication relies on the fusion of neurotransmitter-containing vesicles with the plasma membrane. The soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins initiate membrane fusion through the formation of the SNARE complex, a process tightly regulated by Sec1/Munc18-1 (SM) proteins. The emerging trend is that SM proteins promote SNARE-mediated membrane fusion by binding to a Syntaxin N-terminal motif. Here we report that mutations in the hydrophobic pocket of Munc18-1 (F115E and E132A), predicted to disrupt the N-terminal Sx1a interaction have a modest effect on binding to Sx1a in its free state, but abolish binding to the SNARE complex. Overexpression of the Munc18-1 mutant in PC12 cells lacking Munc18-1 rescues both neuroexocytosis and the plasma membrane localization of Syntaxin. However, total internal reflection fluorescence microscopy analysis reveals that expression of a Munc18-1 double mutant reduces the rate of vesicle fusion, an effect only detectable at the onset of stimulation. The Munc18-1 hydrophobic pocket is therefore critical for SNARE complex binding. However, mutations abrogating this interaction have a limited impact on Ca(2+)-dependent exocytosis in PC12 cells.


Asunto(s)
Proteínas Munc18/fisiología , Proteínas SNARE/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Exocitosis , Modelos Biológicos , Conformación Molecular , Datos de Secuencia Molecular , Células PC12 , Estructura Terciaria de Proteína , Proteínas Qa-SNARE/metabolismo , Ratas , Proteínas Recombinantes/química
17.
Handb Exp Pharmacol ; (184): 171-206, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18064415

RESUMEN

alpha-Latrotoxin (alpha-LTX) from black widow spider venom induces exhaustive release of neurotransmitters from vertebrate nerve terminals and endocrine cells. This 130-kDa protein has been employed for many years as a molecular tool to study exocytosis. However, its action is complex: in neurons, alpha-LTX induces massive secretion both in the presence of extracellular Ca(2+) (Ca(2+) (e)) and in its absence; in endocrine cells, it usually requires Ca(2+) (e). To use this toxin for further dissection of secretory mechanisms, one needs an in-depth understanding of its functions. One such function that explains some alpha-LTX effects is its ability to form cation-permeable channels in artificial lipid bilayers. The mechanism of alpha-LTX pore formation, revealed by cryo-electron microscopy, involves toxin assembly into homotetrameric complexes which harbor a central channel and can insert into lipid membranes. However, in biological membranes, alpha-LTX cannot exert its actions without binding to specific receptors of the plasma membrane. Three proteins with distinct structures have been found to bind alpha-LTX: neurexin Ialpha, latrophilin 1, and receptor-like protein tyrosine phosphatase sigma. Upon binding a receptor, alpha-LTX forms channels permeable to cations and small molecules; the toxin may also activate the receptor. To distinguish between the pore- and receptor-mediated effects, and to study structure-function relationships in the toxin, alpha-LTX mutants have been used.


Asunto(s)
Neurotransmisores/metabolismo , Receptores de Droga/efectos de los fármacos , Venenos de Araña/farmacología , Animales , Calcio/fisiología , Membrana Celular/efectos de los fármacos , Humanos , Modelos Moleculares , Conformación Molecular , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/antagonistas & inhibidores , Receptores de Péptidos/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Venenos de Araña/química
18.
Mol Biol Cell ; 19(2): 722-34, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18077557

RESUMEN

Although Munc18-1 was originally identified as a syntaxin1-interacting protein, the physiological significance of this interaction remains unclear. In fact, recent studies of Munc18-1 mutants have suggested that Munc18-1 plays a critical role for docking of secretory vesicles, independent of syntaxin1 regulation. Here we investigated the role of Munc18-1 in syntaxin1 localization by generating stable neuroendocrine cell lines in which Munc18-1 was strongly down-regulated. In these cells, the secretion capability, as well as the docking of dense-core vesicles, was significantly reduced. More importantly, not only was the expression level of syntaxin1 reduced, but the localization of syntaxin1 at the plasma membrane was also severely perturbed. The mislocalized syntaxin1 resided primarily in the perinuclear region of the cells, in which it was highly colocalized with Secretogranin II, a marker protein for dense-core vesicles. In contrast, the expression level and the plasma membrane localization of SNAP-25 were not affected. Furthermore, the syntaxin1 localization and the secretion capability were restored upon transfection-mediated reintroduction of Munc18-1. Our results indicate that endogenous Munc18-1 plays a critical role for the plasma membrane localization of syntaxin1 in neuroendocrine cells and therefore necessitates the interpretation of Munc18-1 mutant phenotypes to be in terms of mislocalized syntaxin1.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Munc18/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sintaxina 1/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Microscopía Confocal , Proteínas Munc18/genética , Factor de Crecimiento Nervioso/farmacología , Células PC12 , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Vesículas Secretoras/efectos de los fármacos , Vesículas Secretoras/ultraestructura , Fracciones Subcelulares/metabolismo , Transfección
19.
J Biol Chem ; 282(29): 21392-403, 2007 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-17540763

RESUMEN

Although CAPS1 was originally identified as a soluble factor that reconstitutes Ca(2+)-dependent secretion from permeabilized neuroendocrine cells, its exact function in intact mammalian cells remains controversial. Here we investigate the role for CAPS1 by generating stable cell lines in which CAPS1 is strongly down-regulated. In these cells, Ca(2+)-dependent secretion was strongly reduced not only of catecholamine but also of a transfected neuropeptide. These secretion defects were rescued by infusion of CAPS1-containing brain cytosol or by transfection-mediated expression of CAPS1. Whole cell patch clamp recording revealed significant reductions in slow burst and sustained release components of exocytosis in the knockdown cells. Unexpectedly, they also accumulated higher amounts of endogenous and exogenous transmitters, which were attributable to reductions in constitutive secretion. Electron microscopy did not reveal abnormalities in the number or docking of dense core vesicles. Our results indicate that CAPS1 plays critical roles not only in Ca(2+)-dependent, regulated exocytosis but also in constitutive exocytosis downstream of vesicle docking. However, they do not support the role for CAPS1 in loading transmitters into dense core vesicles.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/fisiología , Calcio/metabolismo , Exocitosis , Proteínas del Tejido Nervioso/metabolismo , Vesículas Secretoras/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Células Cromafines/citología , Regulación hacia Abajo , Ratones , Microscopía Confocal , Microscopía Electrónica , Modelos Biológicos , Neuropéptidos/química , Células PC12 , Técnicas de Placa-Clamp , Ratas
20.
J Neurosci ; 27(1): 190-202, 2007 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-17202486

RESUMEN

Although it has been established that the activation of GTPases by non-hydrolyzable GTP stimulates neurotransmitter release from many different secretory cell types, the underlying mechanisms remain unclear. In the present study we aimed to elucidate the functional role(s) for endogenous Ras-like protein A (RalA) and RalB GTPases in GTP-dependent exocytosis. For this purpose stable neuroendocrine pheochromocytoma 12 (PC12) cell lines were generated in which the expressions of both RalA and RalB were strongly downregulated. In these double knock-down cells GTP-dependent exocytosis was reduced severely and was restored after the expression of RalA or RalB was reintroduced by transfection. In contrast, Ca2+-dependent exocytosis and the docking of dense core vesicles analyzed by electron microscopy remained unchanged in the double knock-down cells. Furthermore, the transfected RalA and RalB appeared to be localized primarily on the dense core vesicles in undifferentiated and nerve growth factor-differentiated PC12 cells. Our results indicate that endogenous RalA and RalB function specifically as GTP sensors for the GTP-dependent exocytosis of dense core vesicles, but they are not required for the general secretory pathways, including tethering of vesicles to the plasma membrane and Ca2+-dependent exocytosis.


Asunto(s)
Calcio/metabolismo , Exocitosis/fisiología , Guanosina Trifosfato/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Animales , Células PC12 , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA