Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Neurochem ; 163(5): 375-390, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36227633

RESUMEN

Phosphacan, a chondroitin sulfate proteoglycan, is a repulsive cue of cerebellar granule cells. This study aims to explore the molecular mechanism. The glycosylphosphatidylinositol-anchored neural adhesion molecule TAG-1 is a binding partner of phosphacan, suggesting that the repulsive effect of phosphacan is possibly because of its interaction with TAG-1. The repulsive effect was greatly reduced on primary cerebellar granule cells of TAG-1-deficient mice. Surface plasmon resonance analysis confirmed the direct interaction of TAG-1 with chondroitin sulfate C. On postnatal days 1, 4, 7, 11, 15, and 20 and in adulthood, phosphacan was present in the molecular layer and internal granular layer, but not in the external granular layer. In contrast, transient TAG-1 expression was observed exclusively within the premigratory zone of the external granular layer on postnatal days 1, 4, 7, and 11. Boyden chamber cell migration assay demonstrated that phosphacan exerted its repulsive effect on the spontaneous and brain-derived neurotrophic factor (BDNF)-induced migration of cerebellar granule cells. The BDNF-induced migration was inhibited by MK-2206, an Akt inhibitor. The pre-treatment with a raft-disrupting agent, methyl-ß-cyclodextrin, also inhibited the BDNF-induced migration, suggesting that lipid rafts are involved in the migration of cerebellar granule cells. In primary cerebellar granule cells obtained on postnatal day 7 and cultured for 7 days, the ganglioside GD3 and TAG-1 preferentially localized in the cell body, whereas the ganglioside GD1b and NB-3 localized in not only the cell body but also neurites. Pre-treatment with the anti-GD3 antibody R24, but not the anti-GD1b antibody GGR12, inhibited the spontaneous and BDNF-induced migration, and attenuated BDNF-induced Akt activation. These findings suggest that phosphacan is responsible for the repulsion of TAG-1-expressing cerebellar granule cells via GD3 rafts to attenuate BDNF-induced migration signaling.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Animales , Ratones , Ratas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Cerebelo/metabolismo , Microdominios de Membrana/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo
2.
J Biol Chem ; 294(17): 6659-6669, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30833330

RESUMEN

IgE plays a key role in allergies by binding to allergens and then sensitizing mast cells through the Fc receptor, resulting in the secretion of proinflammatory mediators. Therefore, IgE is a major target for managing allergies. Previous studies have reported that oligomannose on IgE can be a potential target to inhibit allergic responses. However, enzymes that can modulate IgE activity are not yet known. Here, we found that the commercial receptor-destroying enzyme (RDE) (II) from Vibrio cholerae culture fluid specifically modulates IgE, but not IgG, and prevents the initiation of anaphylaxis. RDE (II)-treated IgE cannot access its binding site on bone marrow-derived mast cells, resulting in reduced release of histamine and cytokines. We also noted that RDE (II)-treated IgE could not induce passive cutaneous anaphylaxis in mouse ears. Taken together, we concluded that RDE (II) modulates the IgE structure and renders it unable to mediate allergic responses. To reveal the mechanism by which RDE (II) interferes with IgE activity, we performed lectin microarray analysis to unravel the relationship between IgE modulation and glycosylation. We observed that RDE (II) treatment significantly reduced the binding of IgE to Lycopersicon esculentum lectin, which recognizes poly-N-acetylglucosamine and poly-N-acetyllactosamine. These results suggest that RDE (II) specifically modulates branched glycans on IgE, thereby interfering with its ability to induce allergic responses. Our findings may provide a basis for the development of drugs to inhibit IgE activity in allergies.


Asunto(s)
Anafilaxia/prevención & control , Enzimas/metabolismo , Inmunoglobulina E/inmunología , Vibrio cholerae/enzimología , Anafilaxia/inmunología , Animales , Sitios de Unión , Células de la Médula Ósea/inmunología , Inmunoglobulina E/química , Inmunoglobulina E/metabolismo , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Mastocitos/inmunología , Ratones , Polisacáridos/metabolismo , Inhibidores de Proteasas/farmacología , Conformación Proteica , Tripsina/metabolismo
3.
Int Immunol ; 31(8): 515-530, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30859183

RESUMEN

Natural killer (NK) cells are innate lymphoid cells having potent cytolytic function that provide host defense against microbial infections and tumors. Using our generated monoclonal antibody (mAb), named FE-1H10, new NK cell sub-populations in peripheral blood were identified. The molecules recognized by mAb FE-1H10 were expressed on a sub-population of CD3-CD56dim NK cells. The epitope recognized by mAb FE-1H10 was demonstrated to be N-glycan and proven to be different from CD57. Upon K562 stimulation, the CD56dimFE-1H10+ NK cell sub-population exhibited significantly lower cytolytic function with low ability to degranulate and release cytolytic granules compared to the CD56dimFE-1H10- NK cell sub-population. Moreover, the CD56dimFE-1H10+ NK cells produced less IFN-γ and TNF-α than the CD56dimFE-1H10- NK cells. We demonstrated here that mAb FE-1H10 could identify two sub-populations of circulating CD56dim NK cells with different functions. Our discovery of new sub-populations of NK cells improves our understanding of NK cell biology and may lead to the development of new approaches for NK cell therapy.


Asunto(s)
Células Asesinas Naturales/citología , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/inmunología , Línea Celular , Humanos , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos BALB C
4.
Sci Rep ; 8(1): 17134, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459452

RESUMEN

Chondroitin sulfate (CS) proteoglycan is a major component of the extracellular matrix and plays an important part in organogenesis. To elucidate the roles of CS for craniofacial development, we analyzed the craniofacial morphology in CS N-acetylgalactosaminyltransferase-1 (T1) gene knockout (KO) mice. T1KO mice showed the impaired intramembranous ossification in the skull, and the final skull shape of adult mice included a shorter face, higher and broader calvaria. Some of T1KO mice exhibited severe facial developmental defect, such as eye defects and cleft lip and palate, causing embryonic lethality. At the postnatal stages, T1KO mice with severely reduced CS amounts showed malocclusion, general skeletal dysplasia and skin hyperextension, closely resembling Ehlers-Danlos syndrome-like connective tissue disorders. The production of collagen type 1 was significantly downregulated in T1KO mice, and the deposition of CS-binding molecules, Wnt3a, was decreased with CS in extracellular matrices. The collagen fibers were irregular and aggregated, and connective tissues were dysorganized in the skin and calvaria of T1KO mice. These results suggest that CS regulates the shape of the craniofacial skeleton by modulating connective tissue organization and that the remarkable reduction of CS induces hypoplasia of intramembranous ossification and cartilage anomaly, resulting in skeletal dysplasia.


Asunto(s)
Anomalías Craneofaciales/etiología , Cabeza/anomalías , N-Acetilgalactosaminiltransferasas/genética , Animales , Animales Recién Nacidos , Cartílago/patología , Sulfatos de Condroitina/metabolismo , Colágeno/genética , Colágeno/metabolismo , Anomalías Craneofaciales/genética , Síndrome de Ehlers-Danlos/etiología , Femenino , Cabeza/embriología , Ratones Noqueados , N-Acetilgalactosaminiltransferasas/metabolismo , Osteocondrodisplasias/etiología , Osteogénesis/genética , Embarazo , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
5.
Sens Biosensing Res ; 9: 23-30, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27441183

RESUMEN

In clinical oncology, diagnosis and evaluation of optimal treatment strategies are mostly based on histopathological examination combined with immunohistochemical (IHC) expression analysis of cancer-associated antigens in formalin fixed paraffin-embedded (FFPE) tissue biopsies. However, informative IHC analysis depends on both the specificity and affinity of the binding reagent, which are inherently difficult to quantify in situ. Here we describe a label-free method that allows for the direct and real-time assessment of molecular binding kinetics in situ on FFPE tissue specimens using quartz crystal microbalance (QCM) enabled biosensor technology. We analysed the interaction between the rVAR2 protein and its placental-like chondroitin sulfate (pl-CS) receptor in primary human placenta tissue and in breast and prostate tumour specimens in situ. rVAR2 interacted with FFPE human placenta and cancer tissue with an affinity in the nanomolar range, and showed no detectable interaction with pl-CS negative normal tissue. We further validated the method by including analysis with the androgen receptor N-20 antibody (anti-AR). As the KD value produced by this method is independent of the number of epitopes available, this readout offers a quantitative and unbiased readout for in situ binding-avidity and amount of binding epitopes. In summary, this method adds a new and important dimension to classical IHC-based molecular pathology by adding information about the binding characteristics in biologically relevant conditions. This can potentially be used to select optimal biologics for diagnostic and for therapeutic applications as well as guide the development of novel high affinity binding drugs.

6.
AIDS Res Hum Retroviruses ; 29(3): 621-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23033806

RESUMEN

Cell surface heparan sulfate proteoglycans (HSPGs) are involved in the binding and entry of human T-cell leukemia virus type 1 (HTLV-1) into host cells, while sulfated polysaccharides such as heparin inhibit HTLV-1 infection. Chondroitin sulfate proteoglycans (CSPGs) are classified as another major type of proteoglycans. Here, we examined the effect of four types of chondroitin sulfate (CS) on HTLV-1 infection. Accordingly, a human T cell line, MOLT-4, was inoculated with cell-free HTLV-1 in the presence or absence of soluble CS, and the synthesis of reverse-transcribed HTLV-1 DNA within cells 20 h after inoculation was detected using polymerase chain reaction (PCR). Among the four types of CS (A, C, D, and E), the E type (CSE), which was derived from the squid cartilage, exhibited anti-HTLV-1 activity. Furthermore, we observed that CSE directly interacted with recombinant HTLV-1 envelope (Env) proteins and inhibited the binding of HTLV-1 virions to MOLT-4 cells, indicating that the interaction between Env and CSE plays a significant role in its anti-HTLV-1 activity. In addition, CSE inhibited syncytium formation that was induced by HTLV-1-producing cells. When CSE was mixed with the synthetic fusion inhibitor peptide corresponding to the ectodomain of the Env transmembrane subunit (TM) gp21, the HTLV-1 infection was further inhibited when compared with the inhibitory effect of each compound alone. Thus, further elucidation of the in vitro antiviral mechanism of CSE shown in this study will lead to the development of CSE-like molecules for the entry inhibition of HTLV-1.


Asunto(s)
Antivirales/metabolismo , Sulfatos de Condroitina/metabolismo , Virus Linfotrópico T Tipo 1 Humano/efectos de los fármacos , Virus Linfotrópico T Tipo 1 Humano/fisiología , Acoplamiento Viral/efectos de los fármacos , Animales , Línea Celular , Sulfatos de Condroitina/aislamiento & purificación , ADN Viral/análisis , ADN Viral/genética , Decapodiformes/química , Humanos , Unión Proteica , Linfocitos T/virología , Proteínas del Envoltorio Viral/metabolismo
7.
FEBS Lett ; 587(24): 3943-8, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24446551

RESUMEN

Chondroitin lyases have been known as pathogenic bacterial enzymes that degrade chondroitin. Recently, baculovirus envelope protein ODV-E66 was identified as the first reported viral chondroitin lyase. ODV-E66 has low sequence identity with bacterial lyases at <12%, and unique characteristics reflecting the life cycle of baculovirus. To understand ODV-E66's structural basis, the crystal structure was determined and it was found that the structural fold resembled that of polysaccharide lyase 8 proteins and that the catalytic residues were also conserved. This structure enabled discussion of the unique substrate specificity and the stability of ODV-E66 as well as the host specificity of baculovirus.


Asunto(s)
Baculoviridae/enzimología , Condroitín Liasas/química , Proteínas del Envoltorio Viral/química , Secuencia de Aminoácidos , Baculoviridae/genética , Condroitín Liasas/genética , Condroitín Liasas/metabolismo , Cristalografía por Rayos X , Análisis Mutacional de ADN , Estabilidad de Enzimas , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Pliegue de Proteína , Homología de Secuencia de Aminoácido , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
8.
J Biol Chem ; 287(43): 36022-8, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22936799

RESUMEN

Bifunctional chondroitin synthase K4CP catalyzes glucuronic acid and N-acetylgalactosamine transfer activities and polymerizes a chondroitin chain. Here we have determined that an N-terminal region (residues 58-134) coordinates two transfer reactions and enables K4CP to catalyze polymerization. When residues 58-107 are deleted, K4CP loses polymerase activity while retaining both transfer activities. Peptide (113)DWPSDL(118) within this N-terminal region interacts with C-terminal peptide (677)YTWEKI(682). The deletion of either sequence abolishes glucuronic acid but not N-acetylgalactosamine transfer activity in K4CP. Both donor bindings and transfer activities are lost by mutating (677)YTWEKI(682) to (677)DAWEDI(682). On the other hand, acceptor substrates retain their binding to K4CP mutants. The characteristics of these K4CP mutants highlight different states of the enzyme reaction, providing an underlying structural basis for how these peptides play essential roles in coordinating the two glycosyltransferase activities for K4CP to elongate the chondroitin chain.


Asunto(s)
Condroitín/química , Escherichia coli/enzimología , Hexosiltransferasas/química , Péptidos/química , Secuencias de Aminoácidos , Catálisis , Condroitín/biosíntesis , Condroitín/genética , Escherichia coli/genética , Glicosilación , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Mutación , Péptidos/genética , Péptidos/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad
9.
Artículo en Inglés | MEDLINE | ID: mdl-22297996

RESUMEN

Baculovirus envelope protein ODV-E66 (67-704), in which the N-terminal 66 amino acids are truncated, is a chondroitin lyase. It digests chondroitin and chondroitin 6-sulfate efficiently, but does not digest chondroitin 4-sulfate. This unique characteristic is useful for the preparation of specific chondroitin oligosaccharides and for investigation of the mechanism of baculovirus infection. ODV-E66 (67-704) was crystallized; the crystal diffracted to 1.8 Å resolution and belonged to space group P6(2) or P6(4), with unit-cell parameters a = b = 113.5, c = 101.5 Å. One molecule is assumed to be present per asymmetric unit, which gives a Matthews coefficient of 2.54 Å(3) Da(-1).


Asunto(s)
Baculoviridae/enzimología , Condroitín Liasas/química , Productos del Gen env/química , Cristalización , Difracción de Rayos X
10.
J Biol Chem ; 285(47): 36645-55, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-20843788

RESUMEN

Activin A, a member of the transforming growth factor-ß family, plays important roles in hormonal homeostasis and embryogenesis. In this study, we produced recombinant human activin A and examined its abilities to bind to extracellular matrix proteins. Recombinant activin A expressed in 293-F cells was purified as complexes of mature dimeric activin A with its pro-region. Among a panel of extracellular matrix proteins tested, recombinant activin A bound to perlecan and agrin, but not to laminins, nidogens, collagens I and IV, fibronectin, and nephronectin. The binding of recombinant activin A to perlecan was inhibited by heparin and high concentrations of NaCl and abolished by heparitinase treatment of perlecan, suggesting that activin A binds to the heparan sulfate chains of perlecan. In support of this possibility, recombinant activin A was capable of directly binding to heparin and heparan sulfate chains. Site-directed mutagenesis of recombinant activin A revealed that clusters of basic amino acid residues, Lys(259)-Lys(263) and Lys(270)-Lys(272), in the pro-region were required for binding to perlecan. Interestingly, deletion of the peptide segment Lys(259)-Gly(277) containing both basic amino acid clusters from the pro-region did not impair the activity of activin A to stimulate Smad-dependent gene expressions, although it completely ablated the perlecan-binding activity. The binding of activin A to basement membrane heparan sulfate proteoglycans through the basic residues in the pro-region was further confirmed by in situ activin A overlay assays using frozen tissue sections. Taken together, the present results indicate that activin A binds to heparan sulfate proteoglycans through its pro-region and thereby regulates its localization within tissues.


Asunto(s)
Activinas/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Proteínas Recombinantes/metabolismo , Activinas/genética , Secuencia de Aminoácidos , Animales , Western Blotting , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Técnicas para Inmunoenzimas , Laminina/metabolismo , Luciferasas/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Homología de Secuencia de Aminoácido
11.
Antiviral Res ; 88(2): 236-43, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20851716

RESUMEN

Sulphated glycosaminoglycans such as heparin inhibit the early step of dengue virus infection through interaction with envelope (E) protein. Here, we found that chondroitin sulphate E (CSE), but not CSD, which contains the same degree of sulphation, inhibited dengue virus (DENV) infection of cells with adsorption. CSE significantly reduced infectivity of all dengue virus serotypes to BHK-21 and Vero cells. DENV preferentially bound to CSE immobilised on plastic plates. Also, virus binding to CSE or heparin was cross-inhibited by soluble CSE or heparin. These findings suggested that common carbohydrate determinants on CSE and heparin could be essential epitopes for interaction of DENV, and may be responsible for inhibition of the early steps of DENV infection. A recombinant E protein directly bound heparin and CSE, but not CSD, meaning that interaction of CSE with E protein contributes to the inhibitory action of this glycosaminoglycan. These observations indicate that a specific carbohydrate structure rather than polysulphation or addition of negative charges of the glycosaminoglycan molecule would be necessary for direct binding to DENV E protein. In conclusion, CSE showed antiviral activity as an entry inhibitor targeting E protein of dengue virus.


Asunto(s)
Antivirales/farmacología , Sulfatos de Condroitina/farmacología , Virus del Dengue/efectos de los fármacos , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Acoplamiento Viral/efectos de los fármacos , Aedes , Animales , Sitios de Unión/efectos de los fármacos , Unión Competitiva/efectos de los fármacos , Chlorocebus aethiops , Virus del Dengue/metabolismo , Virus del Dengue/fisiología , Expresión Génica , Glicosaminoglicanos/farmacología , Heparitina Sulfato/farmacología , Ácido Hialurónico/farmacología , Células Vero , Internalización del Virus
12.
J Biol Chem ; 283(47): 32328-33, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18806260

RESUMEN

Bacterial chondroitin polymerase K4CP is a multifunctional enzyme with two active sites. K4CP catalyzes alternative transfers of glucoronic acid (GlcA) and N-acetylgalactosamine (GalNAc) to elongate a chain consisting of the repeated disaccharide sequence GlcAbeta1-3GalNAcbeta1-4. Unlike the polymerization reactions of DNA and RNA and polypeptide synthesis, which depend upon templates, the monosaccharide polymerization by K4CP does not. To investigate the catalytic mechanism of this reaction, we have used isothermal titration calorimetry to determine the binding of the donor substrates UDP-GlcA and UDP-GalNAc to purified K4CP protein and its mutants. Only one donor molecule bound to one molecule of K4CP at a time. UDP-GlcA bound only to the C-terminal active site at a high affinity (K(d)=6.81 microm), thus initiating the polymerization reaction. UDP-GalNAc could bind to either the N-terminal or C-terminal active sites at a low affinity (K(d)=266-283 microm) but not to both sites at the same time. The binding affinity of UDP-GalNAc to a K4CP N-terminal fragment (residues 58-357) was profoundly decreased, yielding the average K(d) value of 23.77 microm, closer to the previously reported K(m) value for the UDP-GalNAc transfer reaction that takes place at the N-terminal active site. Thus, the first step of the reaction appears to be the binding of UDP-GlcA to the C-terminal active site, whereas the second step involves the C-terminal region of the K4CP molecule regulating the binding of UDP-GalNAc to only the N-terminal active site. Alternation of these two specific bindings advances the polymerization reaction by K4CP.


Asunto(s)
Escherichia coli/enzimología , Hexosiltransferasas/metabolismo , Calorimetría , Dominio Catalítico , ADN/química , Disacáridos/química , Escherichia coli/metabolismo , Hexosiltransferasas/fisiología , Hidrólisis , Cinética , Mutación , Péptidos/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Termodinámica
13.
Genes Cells ; 13(7): 759-70, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18513329

RESUMEN

Orientation of mitotic spindle and cell division axis can impact normal physiological processes, including epithelial tissue branching and neuron generation by asymmetric cell division. Microtubule dynamics and its interaction with cortical proteins regulate the orientation of mitotic spindle axis. However, the nature of extracellular signals that control proper orientation of mitotic spindle axis is largely unclear. Here, we show that signals from two distinct surface contact, "bi-surface-contact," sites are required for the orientation of mitotic spindle axis in normal epithelial cells. We identified apical and basal surface-membrane as required bi-surface-contact sites. We showed that high molecular weight (HMW) hyaluronan (HA)-CD44 signaling from the apical surface-membrane regulated the orientation of mitotic spindle axis to align parallel to the basal extracellular matrix (ECM). The same effect was achieved by fibronectin-integrin alphavbeta6 signaling from the basal surface-membrane or by inhibition of ROCK activity. On the contrary, HMW HA-CD44 signaling from the basal surface-membrane regulated the orientation of mitotic spindle axis to align oblique-perpendicular to the basal ECM. We also found that microtubule dynamics is required for HMW HA-CD44 mediated regulation of mitotic spindle orientation. Our findings thus provide a novel mechanism for the regulation of mitotic spindle orientation.


Asunto(s)
Polaridad Celular/fisiología , Células Epiteliales/citología , Receptores de Hialuranos/fisiología , Ácido Hialurónico/fisiología , Transducción de Señal/fisiología , Huso Acromático/fisiología , Animales , Línea Celular , Línea Celular Tumoral , Pollos , Células Epiteliales/fisiología , Matriz Extracelular/fisiología , Humanos , Ácido Hialurónico/química , Integrinas/fisiología , Masculino , Ratones , Peso Molecular , Ratas , Mucosa Respiratoria/citología , Mucosa Respiratoria/fisiología
14.
Hepatol Res ; 34(3): 178-86, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16448842

RESUMEN

Our previous study suggested that the serum-derived hyaluronan associated protein (SHAP)-hyaluronan (HA) complex in the sera of patients with rheumatoid arthritis is useful as a marker that directly correlates with the degree of inflammation. Here, we have investigated the serum levels of the SHAP-HA complex in patients at various clinical stages of chronic hepatitis (CH), liver cirrhosis (LC), and hepatocellular carcinoma (HCC) caused by infection with the hepatitis C or hepatitis B virus. Both serum levels of the SHAP-HA complex and HA in those patients were significantly higher than those of the controls and increased in the order of CH

15.
J Biol Chem ; 278(50): 50546-53, 2003 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-14525997

RESUMEN

A novel fibronectin (FN) isoform lacking the segment from IIICS (type III connecting segment) through the I-10 module is expressed predominantly in normal cartilaginous tissues. We expressed and purified recombinant cartilage-type FN using a mammalian expression system and characterized its molecular and biological properties. Although FNs have been shown to be secreted as disulfide-bonded dimers, cartilage-type FN was secreted mainly as a monomer. It was less potent than plasma-type FN in promoting cell adhesion and binding to integrin alpha5beta1, although it was more active than plasma-type FN in binding to chondroitin sulfate E. When added exogenously, cartilage-type FN was poorly assembled into the fibrillar FN matrix, mostly because of its monomeric structure. Given that cartilage is characterized by its non-fibrillar matrix with abundant chondroitin sulfate-containing proteoglycans, it is likely that cartilage-type FN has evolved to adapt itself to the non-fibrillar structure of the cartilage matrix through acquisition of a novel mechanism of alternative pre-mRNA splicing.


Asunto(s)
Cartílago/metabolismo , Fibronectinas/biosíntesis , Fibronectinas/química , Animales , Anticuerpos Monoclonales/metabolismo , Células CHO , Adhesión Celular , Línea Celular , Células Cultivadas , Sulfatos de Condroitina/química , Cricetinae , ADN Complementario/metabolismo , Disulfuros/química , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente Indirecta , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Immunoblotting , Integrina alfa5beta1/metabolismo , Ratones , Modelos Genéticos , Péptidos/química , Unión Proteica , Isoformas de Proteínas , Proteoglicanos/metabolismo , ARN/metabolismo , Empalme del ARN , Proteínas Recombinantes/química , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA