Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS Pathog ; 17(5): e1009570, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33989345

RESUMEN

Mycobacterium tuberculosis (Mtb) has complex and dynamic interactions with the human host, and subpopulations of Mtb that emerge during infection can influence disease outcomes. This study implicates zinc ion (Zn2+) availability as a likely driver of bacterial phenotypic heterogeneity in vivo. Zn2+ sequestration is part of "nutritional immunity", where the immune system limits micronutrients to control pathogen growth, but this defense mechanism seems to be ineffective in controlling Mtb infection. Nonetheless, Zn2+-limitation is an environmental cue sensed by Mtb, as calprotectin triggers the zinc uptake regulator (Zur) regulon response in vitro and co-localizes with Zn2+-limited Mtb in vivo. Prolonged Zn2+ limitation leads to numerous physiological changes in vitro, including differential expression of certain antigens, alterations in lipid metabolism and distinct cell surface morphology. Furthermore, Mtb enduring limited Zn2+ employ defensive measures to fight oxidative stress, by increasing expression of proteins involved in DNA repair and antioxidant activity, including well described virulence factors KatG and AhpC, along with altered utilization of redox cofactors. Here, we propose a model in which prolonged Zn2+ limitation defines a population of Mtb with anticipatory adaptations against impending immune attack, based on the evidence that Zn2+-limited Mtb are more resistant to oxidative stress and exhibit increased survival and induce more severe pulmonary granulomas in mice. Considering that extracellular Mtb may transit through the Zn2+-limited caseum before infecting naïve immune cells or upon host-to-host transmission, the resulting phenotypic heterogeneity driven by varied Zn2+ availability likely plays a key role during early interactions with host cells.


Asunto(s)
Granuloma/microbiología , Lipidómica , Mycobacterium tuberculosis/fisiología , Proteoma , Transcriptoma , Zinc/deficiencia , Adaptación Fisiológica , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Granuloma/inmunología , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Pulmón/microbiología , Ratones , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , Oxidación-Reducción , Estrés Oxidativo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
2.
J Control Release ; 266: 238-247, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-28987879

RESUMEN

Worldwide, tuberculosis (TB) remains one of the most prevalent infectious diseases causing morbidity and death in >1.5 million patients annually. Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, usually resides in the alveolar macrophages. Current tuberculosis treatment methods require more than six months, and low compliance often leads to therapeutic failure and multidrug resistant strain development. Critical to improving TB-therapy is shortening treatment duration and increasing therapeutic efficacy. In this study, we sought to determine if lung hemodynamics and pathological changes in Mtb infected cells can be used for the selective targeting of microparticles to infected tissue(s). Thioaptamers (TA) with CD44 (CD44TA) targeting moiety were conjugated to discoidal silicon mesoporous microparticles (SMP) to enhance accumulation of these agents/carriers in the infected macrophages in the lungs. In vitro, CD44TA-SMP accumulated in macrophages infected with mycobacteria efficiently killing the infected cells and decreasing survival of mycobacteria. In vivo, increased accumulations of CD44TA-SMP were recorded in the lung of M. tuberculosis infected mice as compared to controls. TA-targeted carriers significantly diminished bacterial load in the lungs and caused recruitment of T lymphocytes. Proposed mechanism of action of the designed vector accounts for a combination of increased uptake of particles that leads to infected macrophage death, as well as, activation of cellular immunity by the TA, causing increased T-cell accumulation in the treated lungs. Based on our data with CD44TA-SMP, we anticipate that this drug carrier can open new avenues in TB management.


Asunto(s)
Aptámeros de Nucleótidos/administración & dosificación , Portadores de Fármacos/administración & dosificación , Receptores de Hialuranos/genética , Mycobacterium tuberculosis , Tuberculosis/tratamiento farmacológico , Animales , Células Cultivadas , Femenino , Humanos , Receptores de Hialuranos/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos BALB C , Silicio/administración & dosificación , Linfocitos T/inmunología , Tuberculosis/inmunología , Tuberculosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA