Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Headache Pain ; 25(1): 113, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39009958

RESUMEN

BACKGROUND: Neurogenic meningeal inflammation is regarded as a key driver of migraine headache. Multiple evidence show importance of inflammatory processes in the dura mater for pain generation but contribution of the leptomeninges is less clear. We assessed effects of cortical spreading depolarization (CSD), the pathophysiological mechanism of migraine aura, on expression of inflammatory mediators in the leptomeninges. METHODS: A single CSD event was produced by a focal unilateral microdamage of the cortex in freely behaving rats. Three hours later intact cortical leptomeninges and parenchyma of ipsi-lesional (invaded by CSD) and sham-treated contra-lesional (unaffected by CSD) hemispheres were collected and mRNA levels of genes associated with inflammation (Il1b, Tnf, Ccl2; Cx3cl1, Zc3h12a) and endocannabinoid CB2 receptors (Cnr2) were measured using qPCR. RESULTS: Three hours after a single unilateral CSD, most inflammatory factors changed their expression levels in the leptomeninges, mainly on the side of CSD. The meninges overlying affected cortex increased mRNA expression of all proinflammatory cytokines (Il1b, Tnf, Ccl2) and anti-inflammatory factors Zc3h12a and Cx3cl1. Upregulation of proinflammatory cytokines was found in both meninges and parenchyma while anti-inflammatory markers increased only meningeal expression. CONCLUSION: A single CSD is sufficient to produce pronounced leptomeningeal inflammation that lasts for at least three hours and involves mostly meninges overlying the cortex affected by CSD. The prolonged post-CSD inflammation of the leptomeninges can contribute to mechanisms of headache generation following aura phase of migraine attack.


Asunto(s)
Depresión de Propagación Cortical , Meninges , Animales , Depresión de Propagación Cortical/fisiología , Ratas , Masculino , Meninges/fisiopatología , Inflamación/fisiopatología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Ratas Wistar , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética
2.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047481

RESUMEN

A significant body of evidence shows that neuroinflammation is one of the key processes in the development of brain pathology in trauma, neurodegenerative disorders, and epilepsy. Various brain insults, including severe and prolonged seizure activity during status epilepticus (SE), trigger proinflammatory cytokine release. We investigated the expression of the proinflammatory cytokines interleukin-1ß (Il1b) and interleukin-6 (Il6), and anti-inflammatory fractalkine (Cx3cl1) in the hippocampus, entorhinal cortex, and neocortex of rats 24 h, 7 days, and 5 months after lithium-pilocarpine SE. We studied the relationship between cytokine expression and neuronal death in the hippocampus and evaluated the effect of modulation of endocannabinoid receptors on neuroinflammation and neurodegeneration after SE. The results of the present study showed that inhibition of endocannabinoid CB1 receptors with AM251 early after SE had a transient neuroprotective effect that was absent in the chronic period and did not affect the development of spontaneous seizures after SE. At the same time, AM251 reduced the expression of Il6 in the chronic period after SE. Higher Cx3cl1 levels were found in rats with more prominent hippocampal neurodegeneration.


Asunto(s)
Neocórtex , Estado Epiléptico , Ratas , Animales , Pilocarpina/toxicidad , Litio/farmacología , Litio/metabolismo , Citocinas/metabolismo , Endocannabinoides/metabolismo , Interleucina-6/metabolismo , Enfermedades Neuroinflamatorias , Estado Epiléptico/patología , Hipocampo/metabolismo , Neocórtex/metabolismo , Modelos Animales de Enfermedad
3.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613527

RESUMEN

Cortical spreading depolarization (CSD) is the neuronal correlate of migraine aura and the reliable consequence of acute brain injury. The role of CSD in triggering headaches that follow migraine aura and brain injury remains to be uncertain. We examined whether a single CSD occurring in awake animals modified the expression of proinflammatory cytokines (Il1b, TNF, and Il6) and endogenous mediators of nociception/neuroinflammation-pannexin 1 (Panx1) channel and calcitonin gene-related peptide (CGRP), transforming growth factor beta (TGFb) in the cortex. Unilateral microinjury of the somatosensory cortex triggering a single CSD was produced in awake Wistar rats. Three hours later, tissue samples from the lesioned cortex, intact ipsilesional cortex invaded by CSD, and homologous areas of the contralateral sham-treated cortex were harvested and analyzed using qPCR. Three hours post-injury, intact CSD-exposed cortexes increased TNF, Il1b, Panx1, and CGRP mRNA levels. The strongest upregulation of proinflammatory cytokines was observed at the injury site, while CGRP and Panx1 were upregulated more strongly in the intact cortexes invaded by CSD. A single CSD is sufficient to produce low-grade parenchymal neuroinflammation with simultaneous overexpression of Panx1 and CGRP. The CSD-induced molecular changes may contribute to pathogenic mechanisms of migraine pain and post-injury headache.


Asunto(s)
Depresión de Propagación Cortical , Epilepsia , Trastornos Migrañosos , Ratas , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Depresión de Propagación Cortical/fisiología , Citocinas/genética , Citocinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Enfermedades Neuroinflamatorias , Ratas Wistar , Corteza Cerebral/metabolismo , Trastornos Migrañosos/metabolismo , Interleucina-1/metabolismo , Epilepsia/metabolismo
4.
Mol Neurobiol ; 58(8): 4028-4037, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33907944

RESUMEN

We compared neuroinflammatory responses induced by nonconvulsive and convulsive seizures and analyzed the role that may be played by cannabinoid CB2 receptors in the neuroinflammatory response induced by generalized tonic-clonic seizures (GTCS). Using quantitative PCR, we analyzed expression of interleukin-1b, CCL2, interleukin-6, tumor necrosis factor (TNF), transforming growth factor beta 1 (TGFb1), fractalkine, and cannabinoid receptor type 2 in the neocortex, dorsal and ventral hippocampus, cortical leptomeninges, dura mater, and spleen in 3 and 6 h after induction of GTCS by a high dose of pentylenetetrazole (PTZ, 70 mg/kg) and absence-like activity by a low dose of PTZ (30 mg/kg). The low dose of PTZ had no effect on the gene expression 3 and 6 h after PTZ injection. In 3 and 6 h after high PTZ dose, the expression of CCL2 and TNF increased in the neocortex. Both ventral and dorsal parts of the hippocampus responded to seizures by elevation of CCL2 expression 3 h after PTZ. Cortical leptomeninges but not dura mater also had elevated CCL2 level and decreased TGFb1 expression 3 h after GTCS. Activation of CB2 receptors by HU308 suppressed an inflammatory response only in the dorsal hippocampus but not neocortex. Suppression of CB2 receptors by AM630 potentiated expression of inflammatory cytokines also in the hippocampus but not in the neocortex. Thus, we showed that GTCS, but not the absence-like activity, provoke inflammatory response in the neocortex, dorsal and ventral hippocampus, and cortical leptomeninges. Modulation of CB2 receptors changes seizure-induced neuroinflammation only in the hippocampus but not neocortex.


Asunto(s)
Citocinas/metabolismo , Hipocampo/metabolismo , Mediadores de Inflamación/metabolismo , Neocórtex/metabolismo , Receptor Cannabinoide CB2/metabolismo , Convulsiones/metabolismo , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Electroencefalografía/métodos , Hipocampo/fisiopatología , Indoles/farmacología , Masculino , Neocórtex/fisiopatología , Ratas , Ratas Wistar , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Convulsiones/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA