Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731817

RESUMEN

MCPH1 has been identified as the causal gene for primary microcephaly type 1, a neurodevelopmental disorder characterized by reduced brain size and delayed growth. As a multifunction protein, MCPH1 has been reported to repress the expression of TERT and interact with transcriptional regulator E2F1. However, it remains unclear whether MCPH1 regulates brain development through its transcriptional regulation function. This study showed that the knockout of Mcph1 in mice leads to delayed growth as early as the embryo stage E11.5. Transcriptome analysis (RNA-seq) revealed that the deletion of Mcph1 resulted in changes in the expression levels of a limited number of genes. Although the expression of some of E2F1 targets, such as Satb2 and Cdkn1c, was affected, the differentially expressed genes (DEGs) were not significantly enriched as E2F1 target genes. Further investigations showed that primary and immortalized Mcph1 knockout mouse embryonic fibroblasts (MEFs) exhibited cell cycle arrest and cellular senescence phenotype. Interestingly, the upregulation of p19ARF was detected in Mcph1 knockout MEFs, and silencing p19Arf restored the cell cycle and growth arrest to wild-type levels. Our findings suggested it is unlikely that MCPH1 regulates neurodevelopment through E2F1-mediated transcriptional regulation, and p19ARF-dependent cell cycle arrest and cellular senescence may contribute to the developmental abnormalities observed in primary microcephaly.


Asunto(s)
Puntos de Control del Ciclo Celular , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Ratones Noqueados , Microcefalia , Animales , Ratones , Senescencia Celular/genética , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/patología , Puntos de Control del Ciclo Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Fibroblastos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
2.
J Clin Ultrasound ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813840

RESUMEN

BACKGROUND: Hypertrophic obstructive cardiomyopathy (HOCM) is clinically symptomatic and prone to malignant arrhythmias and sudden cardiac death (SCD). Currently, an effective treatment is surgical resection of the hypertrophic ventricular septum to relieve the left ventricular outflow tract (LVOT) obstruction and mitral insufficiency. Our center performs an innovative, minimally invasive right infra-axillary thoracotomy for transaortic septal myectomy. Minimally invasive procedures rely more on perioperative transesophageal echocardiography (TEE). This study aimed to explore the use of echocardiography during the perioperative period of surgical intervention for HOCM. METHODS: Between August 2021 and April 2022, 27 patients with HOCM underwent cardiac surgery at our hospital. Minimally invasive transaortic septal resection (Morrow myectomy) was performed from the right axilla. The extent of myectomy and need for mitral valve repair were based on perioperative TEE assessment and surgical findings. The demographic parameters and clinical data of patients were recorded. The cardiopulmonary bypass time, aortic cross-clamp, and mechanical ventilation times were calculated. TEE was used to assess ventricular wall thickening and anatomical abnormalities of mitral regurgitation, assist in intravenous catheterization, and assess the postoperative gradients of the LVOT. RESULTS: Among the 27 patients with HOCM who underwent transaortic septal myectomy by minimally invasive right infra-axillary thoracotomy, 16 had LVOT obstruction, 2 had mid-LV obstruction, and 9 had both LVOT and mid-LV involvement. TEE provides information about the fine structure of the LV cavity and the etiology of the obstruction. In all cases, LVOT obstruction and mitral valve systolic anterior motion were resolved postoperatively, and the degree of mitral regurgitation was significantly reduced. CONCLUSION: Perioperative echocardiography provides valuable information regarding the complex etiology of LVOT obstruction during minimally invasive right infra-axillary thoracotomy for transaortic septal myectomy. It helps determine the extent of septal resection and assess the need for concomitant mitral valve repair.

3.
Front Genet ; 15: 1359579, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586585

RESUMEN

Background: Systemic inflammatory regulators have been associated with preeclampsia (PE) during pregnancy; however, there is inconsistent evidence from animal models and observational results. Methods: Using summary data from genome-wide association studies (GWASs), we performed a bidirectional Mendelian randomization (MR) analysis of two samples of systemic inflammatory regulators (n = 8,186) and PE (n = 267,242) individuals of European ancestry. As our primary analysis, we used the random-effects inverse-variance weighted (IVW) approach. Sensitivity and pleiotropy analyses were conducted using the MR-Egger method, weighted median, MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO), and Cochran's Q test. Results: The results indicate that there is a correlation between a higher circulating level of tumor necrosis factor alpha (TNF-α) and interleukin-9 (IL-9) and an increased risk of PE (odds ratio [OR] = 1.32, 95% confidence interval [CI] = 1.09-1.60, p = 0.004 and OR = 1.28, 95% CI: 1.02-1.62, p = 0.033, respectively). Conversely, lower levels of stem cell growth factor beta (SCGF-ß) (OR = 0.89, 95% CI: 0.80-0.99, p = 0.027) and interleukin-5 (IL-5) (OR = 0.80, 95% CI: 0.65-0.98, p = 0.030) are linked to an increased risk of PE. The macrophage migration inhibitory factor (MIF) is the downstream inflammatory regulator of PE, according to reverse magnetic resonance imaging studies. Conclusion: Our study suggests that SCGF-ß, IL-5, IL-9, and TNF-α causally affect the PE risk, while PE is causally associated with MIF. Further studies are needed to validate these biomarkers in managing PE.

4.
Discov Nano ; 19(1): 66, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619656

RESUMEN

Effective treatment of oily wastewater, which is toxic and harmful and causes serious environmental pollution and health risks, has become an important research field. Membrane separation technology has emerged as a key area of investigation in oil-water separation research due to its high separation efficiency, low costs, and user-friendly operation. This review aims to report on the advances in the research of various types of separation membranes around emulsion permeance, separation efficiency, antifouling efficiency, and stimulus responsiveness. Meanwhile, the challenges encountered in oil-water separation membranes are examined, and potential research avenues are identified.

5.
J Phys Act Health ; : 1-9, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684209

RESUMEN

BACKGROUND: To assess the associations of replacing sedentary behavior with different types of physical activity with mortality among the US adults of varying diabetes statuses. METHODS: This prospective cohort study included 21,637 participants (mean age, 48.5 y) from the National Health and Nutrition Examination Survey 2007-2018. Physical activity including leisure-time moderate-vigorous-intensity activity (MVPA), walking/bicycling, worktime MVPA, and sedentary behavior. We conducted an isotemporal substitution analysis using Cox regression to estimate the associations between replacements and mortality risks. RESULTS: We found significant protective associations between replacing 30 minutes per day sedentary behavior with 3 types of physical activity and all-cause, cardiovascular disease (CVD) mortality risk (except worktime MVPA for CVD mortality) among total participants, with hazard ratio (HR; 95% confidence interval [CI]) ranging from 0.86 (0.77-0.95) to 0.96 (0.94-0.98). Among participants with diagnosed diabetes, replacing sedentary behavior with leisure-time MVPA was associated with a lower all-cause mortality risk (HR 0.81, 95% CI, 0.70-0.94), which was also observed in other subgroups, with HRs (95% CI) ranging from 0.87 (0.80-0.94) to 0.89 (0.81-0.99). Among those with prediabetes/undiagnosed diabetes, replacing sedentary behavior with walking/bicycling was associated with lower CVD mortality risk, and replacement to work-time MVPA was associated with lower all-cause and CVD mortality risk, with HRs (95% CI) ranging from 0.72 (0.63-0.83) to 0.96 (0.92-0.99). CONCLUSIONS: Replacing sedentary behaviors with 30 minutes per day leisure-time MVPA was associated with lower all-cause mortality, regardless of diabetes statuses. Among people with prediabetes/undiagnosed diabetes, walking/bicycling was additionally associated with lower CVD mortality, and worktime MVPA was associated with lower all-cause and CVD mortality.

6.
Small ; : e2305764, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368252

RESUMEN

Photothermal therapy (PTT) is a new treatment modality for tumors. However, the efficient delivery of photothermal agents into tumors remains difficult, especially in hypoxic tumor regions. In this study, an approach to deliver melanin, a natural photothermal agent, into tumors using genetically engineered bacteria for image-guided photothermal and immune therapy is developed. An Escherichia coli MG1655 is transformed with a recombinant plasmid harboring a tyrosinase gene to produce melanin nanoparticles. Melanin-producing genetically engineered bacteria (MG1655-M) are systemically administered to 4T1 tumor-bearing mice. The tumor-targeting properties of MG1655-M in the hypoxic environment integrate the properties of hypoxia targeting, photoacoustic imaging, and photothermal therapeutic agents in an "all-in-one" manner. This eliminates the need for post-modification to achieve image-guided hypoxia-targeted cancer photothermal therapy. Tumor growth is significantly suppressed by irradiating the tumor with an 808 nm laser. Furthermore, strong antitumor immunity is triggered by PTT, thereby producing long-term immune memory effects that effectively inhibit tumor metastasis and recurrence. This work proposes a new photothermal and immune therapy guided by an "all-in-one" melanin-producing genetically engineered bacteria, which can offer broad potential applications in cancer treatment.

7.
Biomed Opt Express ; 15(1): 59-76, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223179

RESUMEN

Hypoxia is a critical tumor microenvironment (TME) component. It significantly impacts tumor growth and metastasis and is known to be a major obstacle for cancer therapy. Integrating hypoxia modulation with imaging-based monitoring represents a promising strategy that holds the potential for enhancing tumor theranostics. Herein, a kind of nanoenzyme Prussian blue (PB) is synthesized as a metal-organic framework (MOF) to load the second near-infrared (NIR-II) small molecule dye IR1061, which could catalyze hydrogen peroxide to produce oxygen and provide a photothermal conversion element for photoacoustic imaging (PAI) and photothermal therapy (PTT). To enhance stability and biocompatibility, silica was used as a coating for an integrated nanoplatform (SPI). SPI was found to relieve the hypoxic nature of the TME effectively, thus suppressing tumor cell migration and downregulating the expression of heat shock protein 70 (HSP70), both of which led to an amplified NIR-II PTT effect in vitro and in vivo, guided by the NIR-II PAI. Furthermore, label-free multi-spectral PAI permitted the real-time evaluation of SPI as a putative tumor treatment. A clinical histological analysis confirmed the amplified treatment effect. Hence, SPI combined with PAI could offer a new approach for tumor diagnosing, treating, and monitoring.

9.
Front Oncol ; 13: 1234961, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849817

RESUMEN

Background: Intrathyroid thymic carcinoma (ITTC) is a rare malignant tumor of the thyroid, probably arising from ectopic thymus or branchial pouch remnants. Most of the literature recommended radical resection as the fundamental treatment for ITTC, and postoperative radiation appears to be able to reduce the recurrence rate in patients with advanced ITTC. However, the issue of adjuvant radiotherapy in completely resected early-stage ITTC has been controversial. Case presentation: Here, we reported a new case of early-stage ITTC that treated with total thyroidectomy and the right central neck dissection. Postoperative external beam radiation therapy (50.0 Gy/25 fractions) was given to the thyroid bed and bilateral cervical lymph node area since the tumor involved part of the sternal thyroid muscle. At 4-year follow-up after completion of radiotherapy, she is without evidence of locally recurrent or distant disease. Conclusion: Since there are no current guidelines for early-stage ITTC, in combination with this case and previous literature, we may suggest routine adjuvant radiotherapy should be considered in patients with incompletely resected tumors and extraparenchymal extension of ITTC. Moreover, we summarized comprehensive and advanced diagnosis, treatment, prognosis of ITTC and comparison between ITTC, primary squamous cell carcinoma of thyroid gland, differentiated thyroid cancer, and anaplastic thyroid cancer.

10.
BMC Cancer ; 23(1): 845, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37691121

RESUMEN

BACKGROUND: Cervical cancer is the fourth most common cancer among women worldwide. Genome-wide association studies have revealed multiple susceptible genes and their polymorphisms for cervical cancer risk. Therefore, we aimed to investigate the correlation between single nucleotide polymorphisms (SNPs) of the CD40 gene and susceptibility to cervical squamous cell carcinoma (CSCC) in a population from the northeastern Han Chinese population. METHODS: The three SNPs (rs1800686, rs3765459, and rs4810485) of the CD40 gene were analyzed by multiplex polymerase chain reaction (PCR) combined with next-generation sequencing methods in 421 patients with CSCC, 594 patients with high-grade squamous intraepithelial lesions (HSIL), and 504 healthy females. Multivariate logistic regression analysis was used to analyze the potential relationship between CD40 gene polymorphisms and CSCC, or HSIL. RESULTS: Our research results showed the AA genotype of rs1800686 had a protective effect on CSCC in comparison to the GG genotype and AG+GG genotypes (AA vs. GG: p = 0.0389 and AA vs. AG+GG: p = 0.0280, respectively). After FDR correction, the results were still statistically significant (p = 0.0389 and p = 0.0389, respectively). Similarly, rs3765459 showed a reduced risk association for CSCC in the codominant and recessive models (AA vs. GG: p = 0.0286 and AA vs. AG+GG: p = 0.0222, respectively). Significant differences remained after FDR correction (p = 0.0286 and p = 0.0286, respectively). However, these differences were no longer significant after the Bonferroni correction. In addition, the genotypes for the rs4810485 polymorphisms were associated with parity of the patients with CSCC. The genotypes for the rs3765459 polymorphisms were significantly correlated with the D-dimer of the patients with CSCC. The 3 SNPs genotypes of the CD40 gene were closely related to the squamous cell carcinoma antigen (SCC) of the patients with HSIL. CONCLUSIONS: The CD40 gene may play a role in the occurrence and development of CSCC.


Asunto(s)
Antígenos CD40 , Carcinoma de Células Escamosas , Neoplasias del Cuello Uterino , Femenino , Humanos , Embarazo , Carcinoma de Células Escamosas/genética , Estudios de Casos y Controles , Antígenos CD40/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Neoplasias del Cuello Uterino/genética
11.
Int J Nanomedicine ; 18: 4871-4884, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662687

RESUMEN

Purpose: Ultrasound molecular imaging (UMI) has proven promising to diagnose the onset and progression of diseases such as angiogenesis, inflammation, and thrombosis. However, microbubble-based acoustic probes are confined to intravascular targets due to their relatively large particle size, greatly reducing the application value of UMI, especially for extravascular targets. Extradomain B fibronectin (ED-B FN) is an important glycoprotein associated with tumor genesis and development and highly expressed in many types of tumors. Here, we developed a gas vesicles (GVs)-based nanoscale acoustic probe (ZD2-GVs) through conjugating ZD2 peptides which can specially target to ED-B FN to the biosynthetic GVs. Materials and Methods: ED-B FN expression was evaluated in normal liver and tumor tissues with immunofluorescence and Western blot. ZD2-GVs were prepared by conjugating ZD2 to the surface of GVs by amide reaction. The inverted microscope was used to analyze the targeted binding capacity of ZD2-GVs to MB49 cells (bladder cancer cell line). The contrast-enhanced imaging features of GVs, non-targeted control GVs (CTR-GVs), and targeted GVs (ZD2-GVs) were compared in three MB49 tumor mice. The penetration ability of ZD2-GVs in tumor tissues was assessed by fluorescence immunohistochemistry. The biosafety of GVs was evaluated by CCK8, blood biochemistry, and HE staining. Results: Strong ED-B FN expression was observed in tumor tissues while little expression in normal liver tissues. The resulting ZD2-GVs had only 267.73 ± 2.86 nm particle size and exhibited excellent binding capability to the MB49 tumor cells. The in vivo UMI experiments showed that ZD2-GVs produced stronger and longer retention in the BC tumors than that of the non-targeted CTR-GVs and GVs. Fluorescence immunohistochemistry confirmed that ZD2-GVs could penetrate the tumor vascular into the interstitial space of the tumors. Biosafety analysis revealed there was no significant cytotoxicity to these tested mice. Conclusion: Thus, ZD2-GVs can function as a potential UMI probe for the early diagnosis of bladder cancer.


Asunto(s)
Fibronectinas , Neoplasias de la Vejiga Urinaria , Animales , Ratones , Ultrasonografía , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Imagen Molecular , Acústica
12.
Heliyon ; 9(8): e19154, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37664741

RESUMEN

Introduction: To investigate the inhibitory effect of sorafenib combined with PEGylated resveratrol on renal cell carcinoma (RCC) and its potential mechanism. Methods: MTT assay was used to detect the inhibitory effects of PEGylated resveratrol and sorafenib alone or combination on proliferation of RCC cells. Scratch and transwell assays were performed to examine the effects on the in vitro migration and invasion of RCC cells, respectively. The anti-tumor activity as well as splenic lymphocyte proliferation of the combination therapy was evaluated in the RCC xenograft mouse model. Western blotting method was used to detect changes in proteins involved in the antitumor efficacy related signaling pathways. Results: Inhibitory effects of PEGylated resveratrol combined with sorafenib incubation on the proliferation of Renca cells was synergistically enhanced compared with the mono-incubation group (both P < 0.01, CI < 1). Scratch and transwell assays revealed that combined incubation could significantly inhibit the migration and invasion of 786-O cells in vitro. Combined PEGylated resveratrol with sorafenib could significantly inhibit the growth of Renca renal carcinoma in mice with the tumor growth inhibition (TGI) of 85.5% and one achieved complete remission on D14, while the two monotherapies were both below 43% on D14, suggesting that current combination may have synergistic anti-renal carcinoma activity. Compared with the control group, PEGylated resveratrol combined with sorafenib in vivo promoted the proliferation of unactivated splenic lymphocytes and the proliferation of lymphocytes stimulated with concanavalin A and lipopolysaccharide. Western blotting results showed that combination therapy may suppress the growth of renal cell carcinoma by inhibiting AKT/mTOR/p70S6k-4EBP-1 and c-Raf7MEK/ERK signaling pathways. Conclusion: PEGylated resveratrol combined with sorafenib can achieve synergistic anti-RCC activity, and the mechanism may be related to the inhibition of Akt/mTOR/p70S6k-4EBP-1 and c-Raf7MEK/ERK signaling pathways.

13.
Sci Rep ; 13(1): 10500, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380667

RESUMEN

This study aimed to evaluate the performance of traditional-deep learning combination model based on Doppler ultrasound for diagnosing malignant complex cystic and solid breast nodules. A conventional statistical prediction model based on the ultrasound features and basic clinical information was established. A deep learning prediction model was used to train the training group images and derive the deep learning prediction model. The two models were validated, and their accuracy rates were compared using the data and images of the test group, respectively. A logistic regression method was used to combine the two models to derive a combination diagnostic model and validate it in the test group. The diagnostic performance of each model was represented by the receiver operating characteristic curve and the area under the curve. In the test cohort, the diagnostic efficacy of the deep learning model was better than traditional statistical model, and the combined diagnostic model was better and outperformed the other two models (combination model vs traditional statistical model: AUC: 0.95 > 0.70, P = 0.001; combination model vs deep learning model: AUC: 0.95 > 0.87, P = 0.04). A combination model based on deep learning and ultrasound features has good diagnostic value.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Ultrasonografía , Angiografía , Pruebas de Función Cardíaca
14.
ACS Nano ; 17(12): 11557-11566, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37294879

RESUMEN

The application of 2D materials-based flexible electronics in wearable scenarios is limited due to performance degradation under strain fields. In contrast to its negative role in existing transistors or sensors, herein, we discover a positive effect of strain to the ammonia detection in 2D PtSe2. Linear modulation of sensitivity is achieved in flexible 2D PtSe2 sensors via a customized probe station with an in situ strain loading apparatus. For trace ammonia absorption, a 300% enhancement in room-temperature sensitivity (31.67% ppm-1) and an ultralow limit of detection (50 ppb) are observed under 1/4 mm-1 curvature strain. We identify three types of strain-sensitive adsorption sites in layered PtSe2 and pinpoint that basal-plane lattice distortion contributes to better sensing performance resulting from reduced absorption energy and larger charge transfer density. Furthermore, we demonstrate state-of-the-art 2D PtSe2-based wireless wearable integrated circuits, which allow real-time gas sensing data acquisition, processing, and transmission through a Bluetooth module to user terminals. The circuits exhibit a wide detection range with a maximum sensitivity value of 0.026 V·ppm-1 and a low energy consumption below 2 mW.

15.
Nat Commun ; 14(1): 2643, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156784

RESUMEN

Photoelectrochemical device is a versatile platform for achieving various chemical transformations with solar energy. However, a grand challenge, originating from mass and electron transfer of triphase-reagents/products in gas phase, water/electrolyte/products in liquid phase and catalyst/photoelectrode in solid phase, largely limits its practical application. Here, we report the simulation-guided development of hierarchical triphase diffusion photoelectrodes, to improve mass transfer and ensure electron transfer for photoelectrochemical gas/liquid flow conversion. Semiconductor nanocrystals are controllably integrated within electrospun nanofiber-derived mat, overcoming inherent brittleness of semiconductors. The mechanically strong skeleton of free-standing mat, together with satisfactory photon absorption, electrical conductivity and hierarchical pores, enables the design of triphase diffusion photoelectrodes. Such a design allows photoelectrochemical gas/liquid conversion to be performed continuously in a flow cell. As a proof of concept, 16.6- and 4.0-fold enhancements are achieved for the production rate and product selectivity of methane conversion, respectively, with remarkable durability.

17.
J Ovarian Res ; 16(1): 57, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36945000

RESUMEN

OBJECTIVE: The accurate preoperative differentiation of benign and malignant adnexal masses, especially those with complex ultrasound morphology, remains a great challenge for junior sonographers. The purpose of this study was to develop and validate a nomogram based on the Ovarian-Adnexal Reporting and Data System (O-RADS) for predicting the malignancy risk of adnexal masses with complex ultrasound morphology. METHODS: A total of 243 patients with data on adnexal masses with complex ultrasound morphology from January 2019 to December 2020 were selected to establish the training cohort, while 106 patients with data from January 2021 to December 2021 served as the validation cohort. Univariate and multivariate analyses were used to determine independent risk factors for malignant tumors in the training cohort. Subsequently, a predictive nomogram model was developed and validated in the validation cohort. The calibration, discrimination, and clinical net benefit of the nomogram model were assessed separately by calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA). Finally, we compared this model to the O-RADS. RESULTS: The O-RADS category, an elevated CA125 level, acoustic shadowing and a papillary projection with color Doppler flow were the independent predictors and were incorporated into the nomogram model. The area under the ROC curve (AUC) of the nomogram model was 0.958 (95% CI, 0.932-0.984) in the training cohort. The specificity and sensitivity were 0.939 and 0.893, respectively. This nomogram also showed good discrimination in the validation cohort (AUC = 0.940, 95% CI, 0.899-0.981), with a sensitivity of 0.915 and specificity of 0.797. In addition, the nomogram model showed good calibration efficiency in both the training and validation cohorts. DCA indicated that the nomogram was clinically useful. Furthermore, the nomogram model had higher AUC and net benefit than the O-RADS. CONCLUSION: The nomogram based on the O-RADS showed a good predictive ability for the malignancy risk of adnexal masses with complex ultrasound morphology and could provide help for junior sonographers.


Asunto(s)
Enfermedades de los Anexos , Nomogramas , Femenino , Humanos , Enfermedades de los Anexos/diagnóstico por imagen , Enfermedades de los Anexos/patología , Ultrasonografía , Anexos Uterinos/patología , Curva ROC
18.
J Nutr ; 153(11): 3164-3172, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36963501

RESUMEN

Selenoprotein I (SELENOI) has been demonstrated to be an ethanolamine phosphotransferase (EPT) characterized by a nonselenoenzymatic domain and to be involved in the main synthetic branch of phosphatidylethanolamine (PE) in the endoplasmic reticulum. Therefore, defects of SELENOI may affect the health status through the multiple functions of PE. On the other hand, selenium (Se) is covalently incorporated into SELENOI as selenocysteine (Sec) in its peptide, which forms a Sec-centered domain as in the other members of the selenoprotein family. Unlike other selenoproteins, Sec-containing SELENOI was formed at a later stage of animal evolution, and the high conservation of the structural domain for PE synthesis across a wide range of species suggests the importance of EPT activity in supporting the survival and evolution of organisms. A variety of factors, such as species characteristics (age and sex), diet and nutrition (dietary Se and fat intakes), SELENOI-specific properties (tissue distribution and rank in the selenoproteome), etc., synergistically regulate the expression of SELENOI in a tentatively unclear interaction. The N- and C-terminal domains confer 2 distinct biochemical functions to SELENOI, namely PE regulation and antioxidant potential, which may allow it to be involved in numerous physiological processes, including neurological diseases (especially hereditary spastic paraplegia), T cell activation, tumorigenesis, and adipocyte differentiation. In this review, we summarize advances in the biology and roles of SELENOI, shedding light on the precise regulation of SELENOI expression and PE homeostasis by dietary Se intake and pharmaceutical or transgenic approaches to modulate the corresponding pathological status.


Asunto(s)
Antioxidantes , Selenio , Animales , Biología , Etanolaminas , Fosfotransferasas , Selenio/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Humanos
19.
Nat Commun ; 14(1): 999, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890170

RESUMEN

Dominant mutations in tyrosyl-tRNA synthetase (YARS1) and six other tRNA ligases cause Charcot-Marie-Tooth peripheral neuropathy (CMT). Loss of aminoacylation is not required for their pathogenicity, suggesting a gain-of-function disease mechanism. By an unbiased genetic screen in Drosophila, we link YARS1 dysfunction to actin cytoskeleton organization. Biochemical studies uncover yet unknown actin-bundling property of YARS1 to be enhanced by a CMT mutation, leading to actin disorganization in the Drosophila nervous system, human SH-SY5Y neuroblastoma cells, and patient-derived fibroblasts. Genetic modulation of F-actin organization improves hallmark electrophysiological and morphological features in neurons of flies expressing CMT-causing YARS1 mutations. Similar beneficial effects are observed in flies expressing a neuropathy-causing glycyl-tRNA synthetase. Hence, in this work, we show that YARS1 is an evolutionary-conserved F-actin organizer which links the actin cytoskeleton to tRNA-synthetase-induced neurodegeneration.


Asunto(s)
Actinas , Tirosina-ARNt Ligasa , Animales , Humanos , Actinas/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Drosophila/genética , Glicina-ARNt Ligasa/genética , Mutación , ARN de Transferencia , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo , Línea Celular Tumoral
20.
Adv Mater ; 35(19): e2205751, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36921344

RESUMEN

Configurational entropy-stabilized single-phase high-entropy oxides (HEOs) have been considered revolutionary electrode materials with both reversible lithium storage and high specific capacity that are difficult to fulfill simultaneously by conventional electrodes. However, precise understanding of lithium storage mechanisms in such HEOs remains controversial due to complex multi-cationic oxide systems. Here, distinct reaction dynamics and structural evolutions in rocksalt-type HEOs upon cycling are carefully studied by in situ transmission electron microscopy (TEM) including imaging, electron diffraction, and electron energy loss spectroscopy at atomic scale. The mechanisms of composition-dependent conversion/alloying reaction kinetics along with spatiotemporal variations of valence states upon lithiation are revealed, characterized by disappearance of the original rocksalt phase. Unexpectedly, it is found from the first visualization evidence that the post-lithiation polyphase state can be recovered to the original rocksalt-structured HEOs via reversible and symmetrical delithiation reactions, which is unavailable for monometallic oxide systems. Rigorous electrochemical tests coupled with postmortem ex situ TEM and bulk-level phase analyses further validate the crucial role of structural recovery capability in ensuring the reversible high-capacity Li-storage in HEOs. These findings can provide valuable guidelines to design compositionally engineer HEOs for almighty electrodes of next-generation long-life energy storage devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA