Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-39388604

RESUMEN

BACKGROUND: Rabdosiae rubescentis herba (Isodon rubescens) is widely used as a folk medicine to treat esophageal cancer and sore throat in China. Its germplasm resources are abundant in China, with I. rubescens (Hemsl.) Hara and I. rubescens f. lushanensis as 2 typical forms. I. rubescens (Hemsl.) Hara is featured by biosynthesis of the diterpenoid oridonin with strong anticancer activity, while I. rubescens f. lushanensis produces another diterpenoid with anticancer activity, lushanrubescensin. However, the biosynthetic pathways of both still need to be fully understood. In particular, little is known about the genetic background of I. rubescens f. lushanensis. FINDINGS: We used Pacific Biosciences (PacBio) single-molecule real-time and Nanopore Ultra-long sequencing platforms, respectively, and obtained 139.07 Gb of high-quality data, with a sequencing depth of about 328×. We also obtained a high-quality reference genome for I. rubescens f. lushanensis, with a genome size of 349 Mb and a contig N50 of 28.8 Mb. The heterozygosity of the genome is 1.7% and the repeatability is 83.43%. In total, 34,865 protein-coding genes were predicted. Moreover, we found that most of the variant or unique genes in the diterpenoid synthesis pathways of I. rubescens f. lushanensis and I. rubescens (Hemsl.) Hara were enriched in diterpene synthases. CONCLUSIONS: We provide the first genome sequence and gene annotation for the I. rubescens f. lushanensis, which provides molecular evidence for understanding the chemotypic differences of I. rubescens.


Asunto(s)
Genoma de Planta , Isodon , Isodon/genética , Isodon/química , Genómica/métodos , Anotación de Secuencia Molecular , Secuenciación de Nucleótidos de Alto Rendimiento , Diterpenos
2.
Environ Pollut ; 361: 124891, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39241951

RESUMEN

Phthalate esters (PAEs), as emerging pollutants, pose a serious threat to human health and have become a major concern in the fields of environmental protection and food safety. Selective adsorption using molecularly imprinted polymer (MIP) is feasible, but most MIPs use the potentially toxic methacrylic acid (MAA) as a functional monomer, along with other crosslinking agents. In this study, MIP adsorbent was prepared using only ethylene glycol dimethacrylate (EGDMA) as both the functional monomer and crosslinking agent, without the inclusion of MAA. The adsorbent was utilized for the adsorption of PAEs from an ethanol aqueous solution. The results showed that EGDMA-based MIP (EMIP) achieved better adsorption performance of PAEs than MAA-based MIP (MMIP) due to more interactions of EGDMA with PAEs than MAA with them. For the adsorption of dibutyl phthalate (DBP) using EMIP, 95% of the equilibrium adsorption capacity was achieved within the first 15 min. In the isotherm analysis, the theoretical maximum adsorption capacity of EMIP was obtained as high as 159.24 mg/g at 20 °C in an ethanol (10 v%) aqueous solution. Furthermore, the adsorption of EMIP was not affected by the pH of the solution. The adsorption process of EMIP followed the pseudo-second-order kinetic and Freundlich isotherm model. Ethanol had a significant impact on the adsorption of DBP, and the results of molecular simulation could validate this. In addition, the regeneration experiments indicated that EMIP could be recycled 5 times without significant performance change and had a high recovery efficiency of 94.55%.

3.
J Control Release ; 368: 780-796, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499091

RESUMEN

Designing effective nanomedicines to induce durable anti-tumor immunity represents a promising strategy for improving moderate immune stimulation. In this study, we engineered a multifunctional nanoreactor (named SCGFP NPs) for remodeling the tumor microenvironment (TME) to improve the therapeutic efficacy of immunotherapy. The core of SCGFP NPs consists of CaCO3 loaded with SN38, prepared by the gas diffusion method, and coated with a significant amount of gallic acid-Fe3+-PEG coordination polymer on the surface. In the acidic TME, SCGFP NPs explosively release exogenous Ca2+ and SN38. The SN38-induced intracellular Ca2+ accumulation and exogenous Ca2+ synergistically trigger immunogenic cell death (ICD) through sustained Ca2+ overload. The ablation of tumors with high-intensity photothermal therapy (PTT) by near-infrared (NIR) irradiation of GA-Fe3+ induces tumor cell necrosis, further enhancing ICD activation. Additionally, SN38 upregulates PD-L1, amplifying tumor responsiveness to immune checkpoint inhibitors (ICIs). This study indicates that SCGFP NPs, through the integration of a trimodal therapeutic strategy, hold enormous potential for various types of tumor immunotherapy through distinct mechanisms or synergistic effects.


Asunto(s)
Inmunoterapia , Neoplasias , Reactores Biológicos , Difusión , Ácido Gálico/uso terapéutico , Polímeros , Microambiente Tumoral , Línea Celular Tumoral
4.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473842

RESUMEN

The N6-methyladenosine (M6A) modification is the most common internal chemical modification of RNA molecules in eukaryotes. This modification can affect mRNA metabolism, regulate RNA transcription, nuclear export, splicing, degradation, and translation, and significantly impact various aspects of physiology and pathobiology. Radiotherapy is the most common method of tumor treatment. Different intrinsic cellular mechanisms affect the response of cells to ionizing radiation (IR) and the effectiveness of cancer radiotherapy. In this review, we summarize and discuss recent advances in understanding the roles and mechanisms of RNA M6A methylation in cellular responses to radiation-induced DNA damage and in determining the outcomes of cancer radiotherapy. Insights into RNA M6A methylation in radiation biology may facilitate the improvement of therapeutic strategies for cancer radiotherapy and radioprotection of normal tissues.


Asunto(s)
Neoplasias , ARN , Humanos , Metilación , ARN/metabolismo , Neoplasias/metabolismo , Reparación del ADN
5.
Food Funct ; 14(24): 10841-10854, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37982854

RESUMEN

Objectives: Fine particulate matter (PM2.5), a small molecule particulate pollutant, can reach the lungs via respiration and cause lung damage. Currently, effective strategies and measures are lacking to prevent and treat the pulmonary toxicity of PM2.5. Astaxanthin (ASX), a natural xanthophyll carotenoid, has attracted attention due to its unique biological activity. Our research aims to probe into the prevention and treatment of ASX on PM2.5-induced lung injury and clarify its potential mechanism. Methods: Sprague-Dawley (SD) rats were given olive oil and different concentrations of ASX orally daily for 21 days. PM2.5 suspension was instilled into the trachea of rats every two days for one week to successfully develop the PM2.5 exposure model in the PM2.5-exposed and ASX-treated groups of rats. The bronchoalveolar lavage fluid (BALF) was collected, and the content of lung injury-related markers was detected. Histomorphological changes and expression of markers associated with oxidative stress, inflammation, iron death, and apoptosis were detected in lung tissue. Results: PM2.5 exposure can cause changes in lung histochemistry and increase the expression levels of TP, AKP, ALB, and LDH in the BALF. Simultaneously, inflammatory responses and oxidative stress were promoted in rat lung tissue after exposure to particulate matter. Additionally, ASX preconditioning can alleviate histomorphological changes, oxidative stress, and inflammation caused by PM2.5 and reduce PM2.5-related ferroptosis and apoptosis. Conclusion: ASX preconditioning can alleviate lung injury after PM2.5 exposure by inhibiting ferroptosis and apoptosis.


Asunto(s)
Ferroptosis , Lesión Pulmonar , Ratas , Animales , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/metabolismo , Material Particulado/toxicidad , Ratas Sprague-Dawley , Pulmón , Xantófilas/farmacología , Inflamación/metabolismo , Apoptosis
6.
Toxicol Res (Camb) ; 12(4): 635-647, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37663802

RESUMEN

Background: The protective effects of astragaloside IV (ASIV) on various diseases are well known, but its potential impact on radiation-induced bystander effect (RIBE) has remained unclear. Objective: This study aimed to explore the protective mechanism of ASIV against oxidative damage caused by RIBE in LO2 cells. Methods: To construct the RIBE model, the conditioned medium from HepG2 cells irradiated with radiation was transferred to nonirradiated LO2 cells. LY294002, a commonly used phosphatidylinositol 3-kinase/Akt pathway inhibitor, was added to LO2 cells 1 h before exposing HepG2 cells to radiation. LO2 cells were then collected for analyses after RIBE exposure. Results: The study found that ASIV significantly improved cell proliferation and promoted the recovery of mitochondrial membrane potential while reducing the rate of apoptosis. Western blot analyses demonstrated that ASIV upregulated B-cell lymphoma 2 and downregulated B-cell lymphoma 2-related X protein and cleaved-caspase 3. Measurement of reactive oxygen species, superoxide dismutase, glutathione peroxidase, and malondialdehyde levels showed that ASIV effectively restored the oxidative stress state induced by RIBE. Additionally, immunofluorescence and western blots analyses confirmed that ASIV enhanced the translocation of Nrf2 to the nucleus and activated downstream nicotinamide adenine dinucleotide phosphate: quinine oxidoreductase 1 and heme oxygenase 1. Importantly, Akt pathway inhibitor repressed ASIV-induced activation of Nrf2 and its protective effect against RIBE. Conclusion: This study demonstrates that ASIV protects LO2 cells against oxidative damage caused by RIBE through activation of the Akt/Nrf2 pathway.

7.
Mol Ther ; 31(9): 2633-2650, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37482682

RESUMEN

Chromatin remodeling and N6-methyladenosine (m6A) modification are two critical layers in controlling gene expression and DNA damage signaling in most eukaryotic bioprocesses. Here, we report that poly(ADP-ribose) polymerase 1 (PARP1) controls the chromatin accessibility of METTL3 to regulate its transcription and subsequent m6A methylation of poly(A)+ RNA in response to DNA damage induced by radiation. The transcription factors nuclear factor I-C (NFIC) and TATA binding protein (TBP) are dependent on PARP1 to access the METTL3 promoter to activate METTL3 transcription. Upon irradiation or PARP1 inhibitor treatment, PARP1 disassociated from METTL3 promoter chromatin, which resulted in attenuated accessibility of NFIC and TBP and, consequently, suppressed METTL3 expression and RNA m6A methylation. Lysophosphatidic Acid Receptor 5 (LPAR5) mRNA was identified as a target of METTL3, and m6A methylation was located at A1881. The level of m6A methylation of LPAR5 significantly decreased, along with METTL3 depression, in cells after irradiation or PARP1 inhibition. Mutation of the LPAR5 A1881 locus in its 3' UTR results in loss of m6A methylation and, consequently, decreased stability of LPAR5 mRNA. METTL3-targeted small-molecule inhibitors depress murine xenograft tumor growth and exhibit a synergistic effect with radiotherapy in vivo. These findings advance our comprehensive understanding of PARP-related biological roles, which may have implications for developing valuable therapeutic strategies for PARP1 inhibitors in oncology.


Asunto(s)
Cromatina , Neoplasias , Humanos , Ratones , Animales , Cromatina/genética , Metilación , ARN/metabolismo , Factores de Transcripción/genética , ARN Mensajero/genética , Neoplasias/genética , Neoplasias/radioterapia , Metiltransferasas/genética , Metiltransferasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/metabolismo
8.
J Transl Med ; 21(1): 401, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340421

RESUMEN

BACKGROUND: Although the executive pathways of senescence are known, the underlying control mechanisms are diverse and not fully understood, particularly how cancer cells avoid triggering senescence despite experiencing exacerbated stress conditions within the tumor microenvironment. METHODS: Mass spectrometry (MS)-based proteomic screening was used to identify differentially regulated genes in serum-starved hepatocellular carcinoma cells and RNAi employed to determine knockdown phenotypes of prioritized genes. Thereafter, gene function was investigated using cell proliferation assays (colony-formation, CCK-8, Edu incorporation and cell cycle) together with cellular senescence assays (SA-ß-gal, SAHF and SASP). Gene overexpression and knockdown techniques were applied to examine mRNA and protein regulation in combination with luciferase reporter and proteasome degradation assays, respectively. Flow cytometry was applied to detect changes in cellular reactive oxygen species (ROS) and in vivo gene function examined using a xenograft model. RESULTS: Among the genes induced by serum deprivation, NIPSNAP1 was selected for investigation. Subsequent experiments revealed that NIPSNAP1 promotes cancer cell proliferation and inhibits P27-dependent induction of senescence via dual mechanisms. Firstly, NIPSNAP1 maintains the levels of c-Myc by sequestering the E3 ubiquitin ligase FBXL14 to prevent the proteasome-mediated turnover of c-Myc. Intriguingly, NIPSNAP1 levels are restrained by transcriptional repression mediated by c-Myc-Miz1, with repression lifted in response to serum withdrawal, thus identifying feedback regulation between NIPSNAP1 and c-Myc. Secondly, NIPSNAP1 was shown to modulate ROS levels by promoting interactions between the deacetylase SIRT3 and superoxide dismutase 2 (SOD2). Consequent activation of SOD2 serves to maintain cellular ROS levels below the critical levels required to induce cell cycle arrest and senescence. Importantly, the actions of NIPSNAP1 in promoting cancer cell proliferation and preventing senescence were recapitulated in vivo using xenograft models. CONCLUSIONS: Together, these findings reveal NIPSNAP1 as an important mediator of c-Myc function and a negative regulator of cellular senescence. These findings also provide a theoretical basis for cancer therapy where targeting NIPSNAP1 invokes cellular senescence.


Asunto(s)
Neoplasias , Complejo de la Endopetidasa Proteasomal , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteómica , Neoplasias/genética , Línea Celular , Senescencia Celular/genética , Microambiente Tumoral , Péptidos y Proteínas de Señalización Intercelular
9.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835431

RESUMEN

Mitochondrion is an important organelle of eukaryotic cells and a critical target of ionizing radiation (IR) outside the nucleus. The biological significance and mechanism of the non-target effect originating from mitochondria have received much attention in the field of radiation biology and protection. In this study, we investigated the effect, role, and radioprotective significance of cytosolic mitochondrial DNA (mtDNA) and its associated cGAS signaling on hematopoietic injury induced by IR in vitro culture cells and in vivo total body irradiated mice in this study. The results demonstrated that γ-ray exposure increases the release of mtDNA into the cytosol to activate cGAS signaling pathway, and the voltage-dependent anion channel (VDAC) may contribute to IR-induced mtDNA release. VDAC1 inhibitor DIDS and cGAS synthetase inhibitor can alleviate bone marrow injury and ameliorate hematopoietic suppression induced by IR via protecting hematopoietic stem cells and adjusting subtype distribution of bone marrow cells, such as attenuating the increase of the F4/80+ macrophage proportion in bone marrow cells. The present study provides a new mechanistic explanation for the radiation non-target effect and an alternative technical strategy for the prevention and treatment of hematopoietic acute radiation syndrome.


Asunto(s)
Citosol , ADN Mitocondrial , Hematopoyesis , Mitocondrias , Nucleotidiltransferasas , Traumatismos Experimentales por Radiación , Animales , Ratones , Citosol/metabolismo , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Hematopoyesis/efectos de la radiación , Traumatismos Experimentales por Radiación/metabolismo
10.
Eur J Nutr ; 62(1): 385-393, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36042048

RESUMEN

BACKGROUND: Observational studies have reported the association between tea consumption and the risk of lower respiratory tract infections (LRTIs). However, a consensus has yet to be reached, and whether the observed association is driven by confounding factors or reverse causality remains unclear. METHOD: A two-sample Mendelian randomization (MR) analysis was conducted to determine whether genetically predicted tea intake is causally associated with the risk of common LRTI subtypes. Genome-wide association study (GWAS) from UK Biobank was used to identify single-nucleotide polymorphisms (SNPs) associated with an extra cup of tea intake each day. The summary statistics for acute bronchitis, acute bronchiolitis, bronchiectasis, pneumonia, and influenza and pneumonia were derived from the FinnGen project. RESULTS: We found that genetically predicted an extra daily cup of tea intake was causally associated with the decreased risk of bronchiectasis [odds ratio (OR) = 0.61, 95% confidence interval (CI) = 0.47-0.78, P < 0.001], pneumonia (OR = 0.90, 95% CI = 0.85-0.96, P = 0.002), influenza and pneumonia (OR = 0.91, 95% CI = 0.85-0.97, P = 0.002), but not with acute bronchitis (OR = 0.91, 95% CI = 0.82-1.01, P = 0.067) and acute bronchiolitis (OR = 0.79, 95% CI = 0.60-1.05, P = 0.100). Sensitivity analyses showed that no heterogeneity and pleiotropy could bias the results. CONCLUSIONS: Our findings provided new evidence that genetically predicted an extra daily cup of tea intake may causally associated with a decreased risk of bronchiectasis, pneumonia, and influenza and pneumonia.


Asunto(s)
Infecciones del Sistema Respiratorio , , Humanos , Bronquiectasia/epidemiología , Bronquiectasia/genética , Bronquiectasia/prevención & control , Bronquitis/epidemiología , Bronquitis/genética , Bronquitis/prevención & control , Ingestión de Líquidos , Estudio de Asociación del Genoma Completo , Gripe Humana/epidemiología , Gripe Humana/genética , Gripe Humana/prevención & control , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/prevención & control
11.
J Transl Med ; 20(1): 456, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199069

RESUMEN

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) is a critical event contributing to more aggressive phenotypes in cancer cells. EMT is frequently activated in radiation-targeted cells during the course of radiotherapy, which often endows cancers with acquired radioresistance. However, the upstream molecules driving the signaling pathways of radiation-induced EMT have not been fully delineated. METHODS: In this study, RNA-seq-based transcriptome analysis was performed to identify the early responsive genes of HeLa cells to γ-ray irradiation. EMT-associated genes were knocked down by siRNA technology or overexpressed in HeLa cells and A549 cells, and the resulting changes in phenotypes of EMT and radiosensitivity were assessed using qPCR and Western blotting analyses, migration assays, colony-forming ability and apoptosis of flow cytometer assays. RESULTS: Through RNA-seq-based transcriptome analysis, we found that LPAR5 is downregulated in the early response of HeLa cells to γ-ray irradiation. Radiation-induced alterations in LPAR5 expression were further revealed to be a bidirectional dynamic process in HeLa and A549 cells, i.e., the early downregulating phase at 2 ~ 4 h and the late upregulating phase at 24 h post-irradiation. Overexpression of LPAR5 prompts EMT programing and migration of cancer cells. Moreover, increased expression of LPAR5 is significantly associated with IR-induced EMT and confers radioresistance to cancer cells. Knockdown of LPAR5 suppressed IR-induced EMT by attenuating the activation of ERK signaling and downstream Snail, MMP1, and MMP9 expression. CONCLUSIONS: LPAR5 is an important upstream regulator of IR-induced EMT that modulates the ERK/Snail pathway. This study provides further insights into understanding the mechanism of radiation-induced EMT and identifies promising targets for improving the effectiveness of cancer radiation therapy.


Asunto(s)
Metaloproteinasa 1 de la Matriz , Neoplasias , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Células HeLa , Humanos , Metaloproteinasa 9 de la Matriz , ARN Interferente Pequeño , Receptores del Ácido Lisofosfatídico
12.
Fitoterapia ; 163: 105331, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36243241

RESUMEN

Six undescribed stilbene derivatives Reflexanbene DH (1-4, 6) and Reflexanbene J (5), as well as one known stilbene 3,5-dimethoxystilbene (7), were isolated from the dried roots of Lindera reflexa Hemsl. Their structures and absolute configurations were elucidated using spectroscopy and electronic circular dichroism (ECD) analysis. In cytotoxic assays, moderately inhibitory activities of Reflexanbene F (3) against MGC80-3 and A549 cell lines were observed, with IC50 values of 15.42 and 5.09 µM, respectively. The IC50 value of Reflexanbene E (2) on A549 cell lines was 19.78 µM. The isolated compounds were also tested for their inhibitory effect against LPS-induced NO and IL-6 production in RAW 264.7 cells. In particular, Reflexanbene J (5) and Reflexanbene H (6) showed significant inhibition of NO production in LPS-stimulated macrophage RAW 264.7 cells at the concentration of 20 µM. Furthermore, the expression of IL-6 protein in the LPS-induced RAW 264.7 cells can also be significantly inhibited by different concentrations (5, 10 and 20 µM, p < 0.05 or p < 0.01) of compounds 1-7.


Asunto(s)
Antiinflamatorios , Antineoplásicos , Lindera , Estilbenos , Humanos , Antiinflamatorios/farmacología , Interleucina-6 , Lindera/química , Lipopolisacáridos , Estructura Molecular , Estilbenos/farmacología , Estilbenos/química , Células A549 , Células RAW 264.7 , Animales , Ratones , Antineoplásicos/farmacología
13.
Int J Mol Sci ; 23(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35682879

RESUMEN

(1) Background: At present, cancer cell metastasis is the main cause of death in patients with malignant tumors, and up to 23% of osteosarcoma patients have died due to lung and lymph node metastasis. Therefore, finding new molecules involved in tumor development can provide new strategies for the diagnosis and treatment of osteosarcoma patients. Circular RNAs (circRNAs) are a type of RNA molecule that are connected head-to-tail to form a closed ring. There is increasing evidence that circRNAs are RNA molecules with many biological functions in various diseases. However, the role and mechanism of circRNAs in osteosarcoma have rarely been reported. (2) Methods: The expression of circSRSF4 in osteosarcoma tissues and cell lines was detected by quantitative real-time PCR (RT-qPCR), and the result of high-throughput sequencing was verified. In order to explore the effect of circSRSF4 on tumor proliferation, invasion, and migration, a dual-luciferase reporter assay, RNA binding protein immunoprecipitation assay, cell counting kit-8 (CCK-8), transwell assay, scratch wound healing assay, Western blot analysis, and other experiments were carried out in vitro. Rescue experiments and a xenograft model confirmed that circSRSF4 directly acted on miR-224 to regulate Rac1 expression. (3) Results: The expression of circSRSF4 was significantly higher in osteosarcoma tissues and cell lines. Down-regulating the expression of circSRSF4 in vitro significantly inhibited the proliferation, invasion, and migration of cells, and also reduced the expression of Rac1, while the overexpression of Rac1 and miR-224 inhibition could reverse these effects. The inhibition of circSRSF4 expression in vivo also attenuated tumor growth. A mechanistic study showed that circSRSF4 can be used as an miR-224 sponge to up-regulate the expression of Rac1, thereby promoting the development of osteosarcoma. (4) Conclusions: CircSRSF4 acting as a ceRNA promotes the malignant behavior of osteosarcoma through the circSRSF4/miR-224/Rac1 axis, which provides a new theoretical basis for the clinical prevention and treatment of osteosarcoma and the study of related markers and intervention targets.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Osteosarcoma/metabolismo , ARN Circular/genética , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
14.
J Enzyme Inhib Med Chem ; 37(1): 1023-1042, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35438580

RESUMEN

3-arylcoumarins with different pharmacological properties widely exist in a variety of natural plants. The extensive research on 3-arylcoumarins was attributed to its therapeutic and relatively easy isolation. Therefore, 3-arylcoumarins can be recognised as useful structures for the design of novel compounds with potential pharmacological interest, particularly in the fields of anti-inflammatory, anti-cancer, antioxidant, Monoamine oxidase (MAO) enzyme inhibition, etc. The current review highlights the biological activities, design, and chemical synthetic methods of 3-arylcoumarins derivatives as well as their important natural product sources.


Asunto(s)
Cumarinas , Inhibidores de la Monoaminooxidasa , Antioxidantes/química , Cumarinas/química , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad
16.
Oncol Lett ; 22(3): 669, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34386091

RESUMEN

Cancer cells use glucose via glycolysis to maintain tumor cell proliferation. However, the effect of long non-coding RNAs (lncRNAs) on glycolysis in osteosarcoma (OS) cells remains unclear. The present study aimed to investigate the involvement of the lncRNA XLOC_005950/hsa-microRNA (miR)-542-3p/phosphofructokinase, muscle (PFKM) axis in the regulation of glucose metabolism, cell proliferation and apoptosis in the progression of OS. lncRNA XLOC_005950, hsa-miR-542-3p and PFKM expression in OS tissues and cells was detected via reverse transcription-quantitative PCR analysis. CRISPR/Cas9 gene editing was used to knockout lncRNA XLOC_005950 expression in MG63 cells. Cell Counting Kit-8 assay, flow cytometry, PFKM activity, and glucose and lactic acid content determination were performed to assess the effects of lncRNA XLOC_005950 knockout and overexpression of hsa-miR-542-3p on the phenotypes of OS cells. The dual-luciferase reporter assay was performed to confirm the targeting associations between lncRNA XLOC_005950, hsa-miR-542-3p and PFKM. The results demonstrated that lncRNA XLOC_005950 expression was upregulated in OS tissues and cells. Functional experiments indicated that lncRNA XLOC_005950 knockout decreased PFKM activity, the intracellular glucose and lactic acid content, and cell proliferation, while increasing apoptosis of OS cells. Furthermore, lncRNA XLOC_005950 knockout upregulated hsa-miR-542-3p expression and downregulated PFKM expression. Overexpression of hsa-miR-542-3p suppressed PFKM expression. Furthermore, lncRNA XLOC_005950, as the molecular sponge of miR-542-3p in OS, modulated the downstream target gene, PFKM. Taken together, the results of the present study suggest that lncRNA XLOC_005950 knockout may inhibit the progression of OS via hsa-miR-542-3p-mediated regulation of PFKM expression.

17.
Aquat Toxicol ; 239: 105940, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34455205

RESUMEN

Non-biting midges are dominant species in aquatic systems and often used for studying the toxicological researches of insecticides. ATP-binding cassette (ABC) transporters represent the largest known members in detoxification genes but is little known about their function in non-biting midges. Here, we selected Propsilocerus akamusi, widespread in urban streams, to first uncover the gene structure, location, characteristics, and phylogenetics of chironomid ABC transporters at genome-scale. Fifty-seven ABC transporter genes are located on four chromosomes, including eight subfamilies (ABCA-H). The ABCC, ABCG, and ABCH subfamilies experienced the duplication events to different degrees. The study showed that expression of the PaABCG17 gene is uniquely significantly elevated, with deltamethrin concentration increasing (1, 4, and 20 ug/L) both in RNA-seq and qPCR results. Additionally, the ABC transporter members of other six chironomids with assembled genomes are first described and used to investigate the characteristic of those living in the different adverse habitats. The ABC transporter frame for Propsilocerus akamusi and its transcriptomic results lay an important foundation for providing valuable resources for understanding the ABC transporter function in insecticide toxification of this species as well as those of other non-biting midges. The PaABCG17 gene is shown to play an important role in deltamethrin detoxification, and it functions need to be further investigated and might be used in the management of insecticide-resistance in chironomid adults.


Asunto(s)
Chironomidae , Contaminantes Químicos del Agua , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfato , Animales , Estudio de Asociación del Genoma Completo , Nitrilos , Filogenia , Piretrinas , Contaminantes Químicos del Agua/toxicidad
18.
Stem Cells Dev ; 30(9): 502-514, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33677993

RESUMEN

This study was designed to assess whether the combination of the glucagon-like peptide-1 (GLP-1) analog exendin-4 (Ex4) and bone marrow-derived mesenchymal stem cell (BM-MSC) could enhance ß-cell action in streptozotocin (STZ)-induced diabetic rats. Forty male Sprague-Dawley rats were randomly assigned to five groups: the normal control group (Normal), diabetes mellitus (DM) group, MSC-treated group (MSC), Ex4-treated group (Ex4), and MSC plus Ex4-treated group (MSC+Ex4). Body weight, blood glucose level, intraperitoneal glucose tolerance test, and in vitro glucose-stimulated insulin secretion were used to assess the treatment efficacy. The expression level of insulin, glucagon, pancreatic duodenal homeobox-1 (PDX-1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), glucagon-like peptide-1 receptor (GLP-1R), and forkhead transcription factor 1 (FoxO1) was estimated by immunofluorescence analysis. Proliferation was assessed by Ki67 staining, and apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining in ß-cells. Glucose-induced insulin secretion in the MSC+Ex4 group was significantly increased compared to that in the MSC group in vitro and in vivo. Compared to that of the other groups, the number of insulin-immunopositive cells was increased in both the MSC and MSC+Ex4 groups. However, ß-cell proliferation and apoptosis in the MSC group and MSC+Ex4 group were not significantly different. Importantly, the expression level of PDX-1, MafA, FoxO1, and GLP-1R in ß-cells in the MSC+Ex4 group was significantly higher than those in the MSC group. The numbers of insulin+ glucagon+ double positive cells and glucagon+ GLP-1+ double positive cells were significantly increased after MSC treatment and MSC+Ex4 combined treatment, suggesting the enhanced function of newly formed islet ß-cells. Our findings showed that the combination of MSC and Ex4 enhanced the function of newly formed ß-cells in STZ-induced diabetic rats by acting on multiple insulin transcription factors. Thus, combined MSC and Ex4 therapy provides a feasible approach for future diabetes treatments.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Exenatida/farmacología , Islotes Pancreáticos/efectos de los fármacos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Regeneración/efectos de los fármacos , Animales , Glucemia/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Terapia Combinada , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/fisiopatología , Exenatida/administración & dosificación , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Insulina/sangre , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/fisiología , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratas Sprague-Dawley
19.
Food Funct ; 12(3): 1207-1218, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33432947

RESUMEN

Dapagliflozin alleviates hyperglycemia by increasing glycosuria, but it induces renal gluconeogenesis, thus neutralizing its efficacy. Resveratrol (Rsv), a natural polyphenolic chemical, improves insulin sensitivity in type 2 diabetes (T2D). Here, we investigated the regulatory effects and underlying mechanisms of Rsv on dapagliflozin-induced renal gluconeogenesis. Male ob/ob mice were given the vehicle (HF), dapagliflozin (1 mg kg-1), Rsv (10 mg kg-1), or dapagliflozin and Rsv combination for 10 weeks. Glucose metabolism was evaluated by glucose and pyruvate tolerance tests. HK-2 cells (human renal proximal tubule cells) were treated with dapagliflozin (1 µmol L-1) for 2 h and further incubated with Rsv (10 µmol L-1) for 12 h. The effects of Rsv on gluconeogenesis and insulin signaling were assessed. Dapagliflozin treatment increased glucose production in HK-2 cells and lowered blood glucose and induced gluconeogenesis in ob/ob mice. After Rsv treatment, the enhanced glucose production and gluconeogenesis were alleviated. The upregulated mRNA and protein expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) and the activation of the forkhead transcription factor O1 (FoxO1) protein in the dapagliflozin group were attenuated by Rsv administration. Rsv also improved renal insulin signaling by increasing PI3K and Akt phosphorylation. The PI3K inhibitor LY294002 dramatically decreased the p-Akt expression and activated FoxO1 by dephosphorylation, thus diminishing the inhibitory effects of Rsv on dapagliflozin-induced PEPCK and G6Pase expression. The data showed the mechanisms of Rsv in attenuating dapagliflozin-induced renal gluconeogenesis via activating the PI3K/Akt pathway and further suppressing FoxO1 activation, suggesting a potential intervention to achieve better glucose-lowering effects for SGLT2 inhibitors in T2D therapy.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Gluconeogénesis/efectos de los fármacos , Glucósidos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resveratrol/farmacología , Animales , Antioxidantes/farmacología , Línea Celular , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/prevención & control , Dieta Alta en Grasa , Proteína Forkhead Box O1 , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Humanos , Masculino , Ratones , Ratones Obesos , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Distribución Aleatoria , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Regulación hacia Arriba/efectos de los fármacos
20.
Fitoterapia ; 148: 104795, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33271259

RESUMEN

The root of Lindera reflexa Hemsl. (LR) is a folk Chinses herbal medicine that has been used to treat gastritis and peptic ulcers. In this study, three new stilbenes (1-3) and two known flavonoids (4 and 5) were isolated from the antiulcer purified fractions of LR. The chemical structures of the isolated compounds were characterized comprehensively based on the basis of extensive spectroscopic data. Absolute configurations of compounds 1, 2, and 3 were determined by ECD calculations. The cytotoxic activities of compounds 1-5 were evaluated by MTT assay. Compound 4 showed the strongest inhibitory effect on the proliferation of tumor cells lines MGC803 and SMMC-7721, with IC50 values of 2.65 and 4.13 µM, respectively. The quantitative analysis of 12 compounds of the antiulcer purified fractions of LR were carried out by using the reversed-phase high-performance liquid chromatography (HPLC) method. Within the test range, all calibration curves showed good linearity (R2 > 0.9993). The LOD, LOQ, specificity, precision, and accuracy of the method were verified. Therefore, the present study may provide a valuable method for quality control the antiulcer purified fractions of LR.


Asunto(s)
Antiulcerosos/farmacología , Flavonoides/farmacología , Lindera/química , Estilbenos/farmacología , Antiulcerosos/aislamiento & purificación , Línea Celular Tumoral , China , Flavonoides/aislamiento & purificación , Humanos , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Raíces de Plantas/química , Estilbenos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA