Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Dairy Sci ; 107(10): 7932-7950, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38876219

RESUMEN

Nutrition and physiological state affect hepatic metabolism. Our objective was to determine whether feeding flaxseed oil (∼50% C18:3n-3 cis), high oleic soybean oil (∼70% C18:1 cis-9), or milk fat (∼50% C16:0) alters hepatic expression of PC, PCK1, and PCK2 and the flow of carbons from propionate and pyruvate into the tricarboxylic acid (TCA) cycle in preruminating calves. Male Holstein calves (n = 40) were assigned to a diet of skim milk with either: 3% milk fat (MF; n = 8), 3% flaxseed oil (Flax; n = 8), 3% high oleic soybean oil (HOSO; n = 8), 1.5% MF + 1.5% high oleic soybean oil (MF-HOSO; n = 8), or 1.5% MF + 1.5% flaxseed oil (MF-Flax; n = 8) from d 14 to d 21 postnatal. At d 21 postnatal, a liver biopsy was taken for gene expression and metabolic flux analysis. Liver explants were incubated in [U-13C] propionate and [U-13C] pyruvate to trace carbon flux through TCA cycle intermediates or with [U-14C] lactate, [1-14C] palmitic acid, or [2-14C] propionate to quantify substrate oxidation to CO2 and acid-soluble products. Compared with other treatments, plasma C18:3n-3 cis was 10 times higher and C18:1 cis-9 was 3 times lower in both Flax (Flax and MF-Flax) treatments. PC, PCK1, and PCK2 expression and flux of [U-13C] pyruvate as well as [U-13C] propionate were not different among treatments. PC expression was negatively correlated with the enrichment of citrate M+5 and malate M+3, and PCK2 was negatively correlated with citrate M+5, suggesting that when expression of these enzymes is increased, carbon from pyruvate enters the TCA cycle via PC-mediated carboxylation, and then oxaloacetate is converted to phosphoenolpyruvate via PCK2. Acid-soluble product formation and PC expression were reduced in HOSO (MF-HOSO and HOSO) treatments compared with Flax (MF-Flax and Flax), indicating that fatty acids regulate PC expression and carbon flux, but that fatty acid flux control points are not connected to PC, PCK1, or PCK2. In conclusion, fatty acids regulate hepatic expression of PC, PCK1, and PCK2, and carbon flux, but the point of control is distinct.


Asunto(s)
Dieta , Ácidos Grasos , Aceite de Linaza , Hígado , Leche , Aceite de Soja , Animales , Aceite de Soja/metabolismo , Bovinos , Aceite de Linaza/metabolismo , Leche/química , Leche/metabolismo , Ácidos Grasos/metabolismo , Dieta/veterinaria , Hígado/metabolismo , Masculino , Alimentación Animal
2.
Nat Commun ; 8: 14477, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28205519

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder in obese individuals. Adenine nucleotide translocase (ANT) exchanges ADP/ATP through the mitochondrial inner membrane, and Ant2 is the predominant isoform expressed in the liver. Here we demonstrate that targeted disruption of Ant2 in mouse liver enhances uncoupled respiration without damaging mitochondrial integrity and liver functions. Interestingly, liver specific Ant2 knockout mice are leaner and resistant to hepatic steatosis, obesity and insulin resistance under a lipogenic diet. Protection against fatty liver is partially recapitulated by the systemic administration of low-dose carboxyatractyloside, a specific inhibitor of ANT. Targeted manipulation of hepatic mitochondrial metabolism, particularly through inhibition of ANT, may represent an alternative approach in NAFLD and obesity treatment.


Asunto(s)
Translocador 2 del Nucleótido Adenina/metabolismo , Adenosina Trifosfato/metabolismo , Hígado Graso/metabolismo , Resistencia a la Insulina , Mitocondrias Hepáticas/metabolismo , Sustancias Protectoras/metabolismo , Translocador 2 del Nucleótido Adenina/genética , Animales , Atractilósido/análogos & derivados , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hígado Graso/terapia , Femenino , Técnica de Clampeo de la Glucosa , Hiperinsulinismo , Metabolismo de los Lípidos , Lipogénesis , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Membranas Mitocondriales/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/terapia , Obesidad/metabolismo , Obesidad/terapia , Ácido Pirúvico/metabolismo
3.
Trends Endocrinol Metab ; 28(4): 250-260, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27986466

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is prevalent in patients with obesity or type 2 diabetes. Nonalcoholic steatohepatitis (NASH), encompassing steatosis with inflammation, hepatocyte injury, and fibrosis, predisposes to cirrhosis, hepatocellular carcinoma, and even cardiovascular disease. In rodent models and humans with NAFLD/NASH, maladaptation of mitochondrial oxidative flux is a central feature of simple steatosis to NASH transition. Induction of hepatic tricarboxylic acid cycle closely mirrors the severity of oxidative stress and inflammation in NASH. Reactive oxygen species generation and inflammation are driven by upregulated, but inefficient oxidative flux and accumulating lipotoxic intermediates. Successful therapies for NASH (weight loss alone or with incretin therapy, or pioglitazone) likely attenuate mitochondrial oxidative flux and halt hepatocellular injury. Agents targeting mitochondrial dysfunction may provide a novel treatment strategy for NAFLD.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/terapia , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/terapia , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/patología , Obesidad/terapia , Pioglitazona , Tiazolidinedionas/uso terapéutico
4.
J Investig Med ; 64(1): 63-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26755815

RESUMEN

The underlying mechanisms responsible for the development and progression of non-alcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM) are unclear. Since the thyroid hormone regulates mitochondrial function in the liver, we designed this study in order to establish the association between plasma free T4 levels and hepatic triglyceride accumulation and histological severity of liver disease in patients with T2DM and NAFLD. This is a cross-sectional study including a total of 232 patients with T2DM. All patients underwent a liver MR spectroscopy ((1)H-MRS) to quantify hepatic triglyceride content, and an oral glucose tolerance test to estimate insulin resistance. A liver biopsy was performed in patients with a diagnosis of NAFLD. Patients were divided into 5 groups according to plasma free T4 quintiles. We observed that decreasing free T4 levels were associated with an increasing prevalence of NAFLD (from 55% if free T4≥1.18 ng/dL to 80% if free T4<0.80 ng/dL, p=0.016), and higher hepatic triglyceride accumulation by (1)H-MRS (p<0.001). However, lower plasma free T4 levels were not significantly associated with more insulin resistance or more severe liver histology (ie, inflammation, ballooning, or fibrosis). Decreasing levels of plasma free T4 are associated with a higher prevalence of NAFLD and increasing levels of hepatic triglyceride content in patients with T2DM. These results suggest that thyroid hormone may play a role in the regulation of hepatic steatosis and support the notion that hypothyroidism may be associated with NAFLD. No NCT number required.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Hígado/metabolismo , Hormonas Tiroideas/sangre , Triglicéridos/metabolismo , Demografía , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Humanos , Resistencia a la Insulina , Hígado/patología , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Prevalencia , Índice de Severidad de la Enfermedad
5.
Drugs ; 73(1): 1-14, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23329465

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is considered the most common liver disorder in the Western world. It is commonly associated with insulin resistance, obesity, dyslipidaemia, type 2 diabetes mellitus (T2DM) and cardiovascular disease. Nonalcoholic steatohepatitis (NASH) is characterized by steatosis with necroinflammation and eventual fibrosis, which can lead to end-stage liver disease and hepatocellular carcinoma. Its pathogenesis is complex, and involves a state of 'lipotoxicity' in which insulin resistance, with increased free fatty acid release from adipose tissue to the liver, play a key role in the onset of a 'lipotoxic liver disease' and its progression to NASH. The diagnosis of NASH is challenging, as most affected patients are symptom free and the role of routine screening is not clearly established. A complete medical history is important to rule out other causes of fatty liver disease (alcohol abuse, medications, other). Plasma aminotransferase levels and liver ultrasound are helpful in the diagnosis of NAFLD/NASH, but a liver biopsy is often required for a definitive diagnosis. However, there is an active search for plasma biomarkers and imaging techniques that may non-invasively aid in the diagnosis. The treatment of NASH requires a multifaceted approach. The goal is to reverse obesity-associated lipotoxicity and insulin resistance via lifestyle intervention. Although there is no pharmacological agent approved for the treatment of NAFLD, vitamin E (in patients without T2DM) and the thiazolidinedione pioglitazone (in patients with and without T2DM) have shown the most consistent results in randomized controlled trials. This review concentrates on our current understanding of the disease, with a focus on the existing therapeutic approaches and potential future pharmacological developments for NAFLD and NASH.


Asunto(s)
Carcinoma Hepatocelular/complicaciones , Hígado Graso/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Vitamina E/uso terapéutico , Carcinoma Hepatocelular/fisiopatología , Hígado Graso/fisiopatología , Humanos , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Pioglitazona , Ensayos Clínicos Controlados Aleatorios como Asunto , Tiazolidinedionas/uso terapéutico , Pérdida de Peso
6.
J Nutr ; 139(5): 869-75, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19282370

RESUMEN

In this study, we aimed to determine the contribution of substrates to tricarboxylic acid (TCA) cycle fluxes in rumen epithelial cells (REC) and duodenal mucosal cells (DMC) isolated from Angus bulls (n = 6) fed either a 75% forage (HF) or 75% concentrate (HC) diet. In separate incubations, [(13)C(6)]glucose, [(13)C(5)]glutamate, [(13)C(5)]glutamine, [(13)C(6)]leucine, or [(13)C(5)]valine were added in increasing concentrations to basal media containing SCFA and a complete mixture of amino acids. Lactate, pyruvate, and TCA cycle intermediates were analyzed by GC-MS followed by (13)C-mass isotopomer distribution analysis. Glucose metabolism accounted for 10-19% of lactate flux in REC from HF-fed bulls compared with 27-39% in REC from HC and in DMC from bulls fed both diets (P < 0.05). For both cell types, as concentration increased, an increasing proportion (3-63%) of alpha-ketoglutarate flux derived from glutamate, whereas glutamine contributed <3% (P < 0.05). Although leucine and valine were catabolized to their respective keto-acids, these were not further metabolized to TCA cycle intermediates. Glucose, glutamine, leucine, and valine catabolism by ruminant gastrointestinal tract cells has been previously demonstrated, but in this study, their catabolism via the TCA cycle was limited. Further, although glutamate's contribution to TCA cycle fluxes was considerable, it was apparent that other substrates available in the media also contributed to the maintenance of TCA fluxes. Lastly, the results suggest that diet composition alters glucose, glutamate, and leucine catabolism by the TCA cycle of REC and DMC.


Asunto(s)
Bovinos/metabolismo , Ciclo del Ácido Cítrico , Ácido Glutámico/metabolismo , Mucosa Intestinal/citología , Rumen/citología , Animales , Isótopos de Carbono , Dieta , Duodeno , Células Epiteliales/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Glucosa/metabolismo , Glutamina/metabolismo , Ácido Láctico/metabolismo , Leucina/metabolismo , Masculino , Ácido Pirúvico/metabolismo , Valina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA