Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cells ; 13(1)2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38201309

RESUMEN

The formation of specific cellular protrusions, plasma membrane blebs, underlies the amoeboid mode of cell motility, which is characteristic for free-living amoebae and leukocytes, and can also be adopted by stem and tumor cells to bypass unfavorable migration conditions and thus facilitate their long-distance migration. Not all cells are equally prone to bleb formation. We have previously shown that membrane blebbing can be experimentally induced in a subset of HT1080 fibrosarcoma cells, whereas other cells in the same culture under the same conditions retain non-blebbing mesenchymal morphology. Here we show that this heterogeneity is associated with the distribution of vimentin intermediate filaments (VIFs). Using different approaches to alter the VIF organization, we show that blebbing activity is biased toward cell edges lacking abundant VIFs, whereas the VIF-rich regions of the cell periphery exhibit low blebbing activity. This pattern is observed both in interphase fibroblasts, with and without experimentally induced blebbing, and during mitosis-associated blebbing. Moreover, the downregulation of vimentin expression or displacement of VIFs away from the cell periphery promotes blebbing even in cells resistant to bleb-inducing treatments. Thus, we reveal a new important function of VIFs in cell physiology that involves the regulation of non-apoptotic blebbing essential for amoeboid cell migration and mitosis.


Asunto(s)
Filamentos Intermedios , Vimentina , Movimiento Celular , Citoplasma , Membrana Celular
2.
Nat Commun ; 13(1): 7089, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402771

RESUMEN

The formation and recovery of gaps in the vascular endothelium governs a wide range of physiological and pathological phenomena, from angiogenesis to tumor cell extravasation. However, the interplay between the mechanical and signaling processes that drive dynamic behavior in vascular endothelial cells is not well understood. In this study, we propose a chemo-mechanical model to investigate the regulation of endothelial junctions as dependent on the feedback between actomyosin contractility, VE-cadherin bond turnover, and actin polymerization, which mediate the forces exerted on the cell-cell interface. Simulations reveal that active cell tension can stabilize cadherin bonds, but excessive RhoA signaling can drive bond dissociation and junction failure. While actin polymerization aids gap closure, high levels of Rac1 can induce junction weakening. Combining the modeling framework with experiments, our model predicts the influence of pharmacological treatments on the junction state and identifies that a critical balance between RhoA and Rac1 expression is required to maintain junction stability. Our proposed framework can help guide the development of therapeutics that target the Rho family of GTPases and downstream active mechanical processes.


Asunto(s)
Actinas , Células Endoteliales , Células Endoteliales/metabolismo , Actinas/metabolismo , Retroalimentación , Transducción de Señal , Citoesqueleto de Actina/metabolismo
3.
Nat Commun ; 13(1): 4078, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835783

RESUMEN

The lack of tumor infiltration by CD8+ T cells is associated with poor patient response to anti-PD-1 therapy. Understanding how tumor infiltration is regulated is key to improving treatment efficacy. Here, we report that phosphorylation of HRS, a pivotal component of the ESCRT complex involved in exosome biogenesis, restricts tumor infiltration of cytolytic CD8+ T cells. Following ERK-mediated phosphorylation, HRS interacts with and mediates the selective loading of PD-L1 to exosomes, which inhibits the migration of CD8+ T cells into tumors. In tissue samples from patients with melanoma, CD8+ T cells are excluded from the regions where tumor cells contain high levels of phosphorylated HRS. In murine tumor models, overexpression of phosphorylated HRS increases resistance to anti-PD-1 treatment, whereas inhibition of HRS phosphorylation enhances treatment efficacy. Our study reveals a mechanism by which phosphorylation of HRS in tumor cells regulates anti-tumor immunity by inducing PD-L1+ immunosuppressive exosomes, and suggests HRS phosphorylation blockade as a potential strategy to improve the efficacy of cancer immunotherapy.


Asunto(s)
Exosomas , Melanoma , Animales , Antígeno B7-H1 , Linfocitos T CD8-positivos , Línea Celular Tumoral , Exosomas/metabolismo , Humanos , Inmunoterapia , Ratones , Fosforilación , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral
4.
Eur J Cell Biol ; 101(3): 151228, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35483122

RESUMEN

Adenomatous Polyposis Coli (APC) protein is mostly known as a tumor suppressor that regulates Wnt signaling, but is also an important cytoskeletal protein. Mutations in the APC gene are linked to colorectal cancer and various neurological disorders and intellectual disabilities. Cytoskeletal functions of APC appear to have significant contributions to both types of these disorders. As a cytoskeletal protein, APC can regulate both actin and microtubule cytoskeletons, which together form the main machinery for cell migration. As APC is a multifunctional protein with numerous interaction partners, the complete picture of how APC regulates cell motility is still unavailable. However, some molecular mechanisms begin to emerge. Here, we review available information about roles of APC in cell migration and propose a model explaining how microtubules, using APC as an intermediate, can initiate leading edge protrusion in response to external signals by stimulating Arp2/3 complex-dependent nucleation of branched actin filament networks via a series of intermediate events.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon , Movimiento Celular , Genes APC , Actinas/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Humanos , Microtúbulos/metabolismo
5.
Int Rev Cell Mol Biol ; 356: 197-256, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33066874

RESUMEN

During development of metastasis, tumor cells migrate through different tissues and encounter different extracellular matrices. An ability of cells to adapt mechanisms of their migration to these diverse environmental conditions, called migration plasticity, gives tumor cells an advantage over normal cells for long distant dissemination. Different modes of individual cell motility-mesenchymal and amoeboid-are driven by different molecular mechanisms, which largely depend on functions of the actin cytoskeleton that can be modulated in a wide range by cellular signaling mechanisms in response to environmental conditions. Various triggers can switch one motility mode to another, but regulations of these transitions are incompletely understood. However, understanding of the mechanisms driving migration plasticity is instrumental for finding anti-cancer treatment capable to stop cancer metastasis. In this review, we discuss cytoskeletal features, which allow the individually migrating cells to switch between mesenchymal and amoeboid migrating modes, called mesenchymal-to-amoeboid transition (MAT). We briefly describe main characteristics of different cell migration modes, and then discuss the triggering factors that initiate MAT with special attention to cytoskeletal features essential for migration plasticity.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular , Modelos Biológicos , Neoplasias/metabolismo , Animales , Humanos , Metástasis de la Neoplasia , Neoplasias/patología
6.
Nat Commun ; 11(1): 4818, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968060

RESUMEN

Migrating cells move across diverse assemblies of extracellular matrix (ECM) that can be separated by micron-scale gaps. For membranes to protrude and reattach across a gap, actin filaments, which are relatively weak as single filaments, must polymerize outward from adhesion sites to push membranes towards distant sites of new adhesion. Here, using micropatterned ECMs, we identify T-Plastin, one of the most ancient actin bundling proteins, as an actin stabilizer that promotes membrane protrusions and enables bridging of ECM gaps. We show that T-Plastin widens and lengthens protrusions and is specifically enriched in active protrusions where F-actin is devoid of non-muscle myosin II activity. Together, our study uncovers critical roles of the actin bundler T-Plastin to promote protrusions and migration when adhesion is spatially-gapped.


Asunto(s)
Movimiento Celular/fisiología , Extensiones de la Superficie Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sistemas CRISPR-Cas , Adhesión Celular , Línea Celular , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Técnicas de Inactivación de Genes , Humanos , Cinética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/ultraestructura , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/ultraestructura , Miosinas/metabolismo , Seudópodos/metabolismo , Receptor EphB2
7.
Mol Biol Cell ; 31(20): 2168-2178, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32697617

RESUMEN

SCAR/WAVE proteins and Arp2/3 complex assemble branched actin networks at the leading edge. Two isoforms of SCAR/WAVE, WAVE1 and WAVE2, reside at the leading edge, yet it has remained unclear whether they perform similar or distinct roles. Further, there have been conflicting reports about the Arp2/3-independent biochemical activities of WAVE1 on actin filament elongation. To investigate this in vivo, we knocked out WAVE1 and WAVE2 genes, individually and together, in B16-F1 melanoma cells. We demonstrate that WAVE1 and WAVE2 are redundant for lamellipodia formation and motility. However, there is a significant decrease in the rate of leading edge actin extension in WAVE2 KO cells, and an increase in WAVE1 KO cells. The faster rates of actin extension in WAVE1 KO cells are offset by faster retrograde flow, and therefore do not translate into faster lamellipodium protrusion. Thus, WAVE1 restricts the rate of actin extension at the leading edge, and appears to couple actin networks to the membrane to drive protrusion. Overall, these results suggest that WAVE1 and WAVE2 have redundant roles in promoting Arp2/3-dependent actin nucleation and lamellipodia formation, but distinct roles in controlling actin network extension and harnessing network growth to cell protrusion.


Asunto(s)
Actinas/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/fisiología , Extensiones de la Superficie Celular/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Seudópodos/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética
8.
J Cell Biol ; 219(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32597939

RESUMEN

Cell migration is driven by pushing and pulling activities of the actin cytoskeleton, but migration directionality is largely controlled by microtubules. This function of microtubules is especially critical for neuron navigation. However, the underlying mechanisms are poorly understood. Here we show that branched actin filament networks, the main pushing machinery in cells, grow directly from microtubule tips toward the leading edge in growth cones of hippocampal neurons. Adenomatous polyposis coli (APC), a protein with both tumor suppressor and cytoskeletal functions, concentrates at the microtubule-branched network interface, whereas APC knockdown nearly eliminates branched actin in growth cones and prevents growth cone recovery after repellent-induced collapse. Conversely, encounters of dynamic APC-positive microtubule tips with the cell edge induce local actin-rich protrusions. Together, we reveal a novel mechanism of cell navigation involving APC-dependent assembly of branched actin networks on microtubule tips.


Asunto(s)
Actinas/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Poliposis Adenomatosa del Colon/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Movimiento Celular/fisiología , Células Cultivadas , Conos de Crecimiento/metabolismo , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
9.
J Cell Biol ; 218(2): 445-454, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30541746

RESUMEN

Membrane blebbing accompanies various cellular processes, including cytokinesis, apoptosis, and cell migration, especially invasive migration of cancer cells. Blebs are extruded by intracellular pressure and are initially cytoskeleton-free, but they subsequently assemble the cytoskeleton, which can drive bleb retraction. Despite increasing appreciation of physiological significance of blebbing, the molecular and, especially, structural mechanisms controlling bleb dynamics are incompletely understood. We induced membrane blebbing in human HT1080 fibrosarcoma cells by inhibiting the Arp2/3 complex. Using correlative platinum replica electron microscopy, we characterize cytoskeletal architecture of the actin cortex in cells during initiation of blebbing and in blebs at different stages of their expansion-retraction cycle. The transition to blebbing in these conditions occurred through an intermediate filopodial stage, whereas bleb initiation was biased toward filopodial bases, where the cytoskeleton exhibited local weaknesses. Different stages of the bleb life cycle (expansion, pausing, and retraction) are characterized by specific features of cytoskeleton organization that provide implications about mechanisms of cytoskeleton assembly and bleb retraction.


Asunto(s)
Citoesqueleto de Actina , Estructuras de la Membrana Celular , Seudópodos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Línea Celular Tumoral , Estructuras de la Membrana Celular/metabolismo , Estructuras de la Membrana Celular/ultraestructura , Humanos , Seudópodos/metabolismo , Seudópodos/ultraestructura
10.
Proc Natl Acad Sci U S A ; 112(4): 957-64, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25552556

RESUMEN

Axon initial segments (AISs) and nodes of Ranvier are sites of clustering of voltage-gated sodium channels (VGSCs) in nervous systems of jawed vertebrates that facilitate fast long-distance electrical signaling. We demonstrate that proximal axonal polarity as well as assembly of the AIS and normal morphogenesis of nodes of Ranvier all require a heretofore uncharacterized alternatively spliced giant exon of ankyrin-G (AnkG). This exon has sequence similarity to I-connectin/Titin and was acquired after the first round of whole-genome duplication by the ancestral ANK2/ANK3 gene in early vertebrates before development of myelin. The giant exon resulted in a new nervous system-specific 480-kDa polypeptide combining previously known features of ANK repeats and ß-spectrin-binding activity with a fibrous domain nearly 150 nm in length. We elucidate previously undescribed functions for giant AnkG, including recruitment of ß4 spectrin to the AIS that likely is regulated by phosphorylation, and demonstrate that 480-kDa AnkG is a major component of the AIS membrane "undercoat' imaged by platinum replica electron microscopy. Surprisingly, giant AnkG-knockout neurons completely lacking known AIS components still retain distal axonal polarity and generate action potentials (APs), although with abnormal frequency. Giant AnkG-deficient mice live to weaning and provide a rationale for survival of humans with severe cognitive dysfunction bearing a truncating mutation in the giant exon. The giant exon of AnkG is required for assembly of the AIS and nodes of Ranvier and was a transformative innovation in evolution of the vertebrate nervous system that now is a potential target in neurodevelopmental disorders.


Asunto(s)
Ancirinas , Axones/metabolismo , Evolución Molecular , Exones , Nódulos de Ranvier , Transducción de Señal , Potenciales de Acción/genética , Animales , Ancirinas/genética , Ancirinas/metabolismo , Ratones , Ratones Noqueados , Mutación , Estructura Terciaria de Proteína , Nódulos de Ranvier/genética , Nódulos de Ranvier/metabolismo , Ratas
11.
Mol Biol Cell ; 18(7): 2579-91, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17475772

RESUMEN

Filopodia have been implicated in a number of diverse cellular processes including growth-cone path finding, wound healing, and metastasis. The Ena/VASP family of proteins has emerged as key to filopodia formation but the exact mechanism for how they function has yet to be fully elucidated. Using cell spreading as a model system in combination with small interfering RNA depletion of Capping Protein, we determined that Ena/VASP proteins have a role beyond anticapping activity in filopodia formation. Analysis of mutant Ena/VASP proteins demonstrated that the entire EVH2 domain was the minimal domain required for filopodia formation. Fluorescent recovery after photobleaching data indicate that Ena/VASP proteins rapidly exchange at the leading edge of lamellipodia, whereas virtually no exchange occurred at filopodial tips. Mutation of the G-actin-binding motif (GAB) partially compromised stabilization of Ena/VASP at filopodia tips. These observations led us to propose a model where the EVH2 domain of Ena/VASP induces and maintains clustering of the barbed ends of actin filaments, which putatively corresponds to a transition from lamellipodial to filopodial localization. Furthermore, the EVH1 domain, together with the GAB motif in the EVH2 domain, helps to maintain Ena/VASP at the growing barbed ends.


Asunto(s)
Proteínas de Capping de la Actina/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Seudópodos/metabolismo , Actinas/metabolismo , Animales , Células COS , Moléculas de Adhesión Celular/química , Línea Celular , Movimiento Celular , Polaridad Celular , Chlorocebus aethiops , Proteínas del Citoesqueleto/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Ratones , Proteínas de Microfilamentos/química , Modelos Biológicos , Mutación/genética , Fenotipo , Fosfoproteínas/química , Fosforilación , Estructura Terciaria de Proteína , Serina/metabolismo
12.
Dev Cell ; 9(2): 209-21, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16054028

RESUMEN

Actin polymerization in cells occurs via filament elongation at the barbed end. Proteins that cap the barbed end terminate this elongation. Heterodimeric capping protein (CP) is an abundant and ubiquitous protein that caps the barbed end. We find that the mouse homolog of the adaptor protein CARMIL (mCARMIL) binds CP with high affinity and decreases its affinity for the barbed end. Addition of mCARMIL to cell extracts increases the rate and extent of Arp2/3 or spectrin-actin seed-induced polymerization. In cells, GFP-mCARMIL concentrates in lamellipodia and increases the fraction of cells with large lamellipodia. Decreasing mCARMIL levels by siRNA transfection lowers the F-actin level and slows cell migration through a mechanism that includes decreased lamellipodia protrusion. This phenotype is reversed by full-length mCARMIL but not mCARMIL lacking the domain that binds CP. Thus, mCARMIL is a key regulator of CP and has profound effects on cell behavior.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Microfilamentos/metabolismo , Factores Despolimerizantes de la Actina , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Extractos Celulares , Línea Celular Tumoral , Movimiento Celular , Destrina , Glioblastoma , Humanos , Técnicas In Vitro , Ratones , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Seudópodos/fisiología , ARN Interferente Pequeño/genética , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
13.
Neuron ; 42(1): 37-49, 2004 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-15066263

RESUMEN

Ena/VASP proteins play important roles in axon outgrowth and guidance. Ena/VASP activity regulates the assembly and geometry of actin networks within fibroblast lamellipodia. In growth cones, Ena/VASP proteins are concentrated at filopodia tips, yet their role in growth cone responses to guidance signals has not been established. We found that Ena/VASP proteins play a pivotal role in formation and elongation of filopodia along neurite shafts and growth cone. Netrin-1-induced filopodia formation was dependent upon Ena/VASP function and directly correlated with Ena/VASP phosphorylation at a regulatory PKA site. Accordingly, Ena/VASP function was required for filopodial formation from the growth cone in response to global PKA activation. We propose that Ena/VASP proteins control filopodial dynamics in neurons by remodeling the actin network in response to guidance cues.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas Portadoras/fisiología , Moléculas de Adhesión Celular/fisiología , Factores de Crecimiento Nervioso/fisiología , Neuronas/fisiología , Fosfoproteínas/fisiología , Seudópodos/fisiología , Citoesqueleto de Actina/metabolismo , Análisis de Varianza , Animales , Anticuerpos/farmacología , Proteínas Sanguíneas/metabolismo , Western Blotting/métodos , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular/inmunología , Moléculas de Adhesión Celular/metabolismo , Recuento de Células , Células Cultivadas , Corteza Cerebral/citología , Pollos , Colforsina/farmacología , Citocalasina D/metabolismo , Proteínas del Citoesqueleto/metabolismo , Dendritas/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Hipocampo/citología , Humanos , Inmunohistoquímica/métodos , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Microfilamentos , Microscopía Electrónica/métodos , Mitocondrias/metabolismo , Netrina-1 , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuroglía/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Fosforilación , Pruebas de Precipitina/métodos , Estructura Terciaria de Proteína/genética , Seudópodos/efectos de los fármacos , Seudópodos/ultraestructura , Factores de Tiempo , Transfección/métodos , Tubulina (Proteína)/metabolismo , Proteínas Supresoras de Tumor
14.
J Cell Biol ; 160(3): 409-21, 2003 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-12566431

RESUMEN

Afilopodium protrudes by elongation of bundled actin filaments in its core. However, the mechanism of filopodia initiation remains unknown. Using live-cell imaging with GFP-tagged proteins and correlative electron microscopy, we performed a kinetic-structural analysis of filopodial initiation in B16F1 melanoma cells. Filopodial bundles arose not by a specific nucleation event, but by reorganization of the lamellipodial dendritic network analogous to fusion of established filopodia but occurring at the level of individual filaments. Subsets of independently nucleated lamellipodial filaments elongated and gradually associated with each other at their barbed ends, leading to formation of cone-shaped structures that we term Lambda-precursors. An early marker of initiation was the gradual coalescence of GFP-vasodilator-stimulated phosphoprotein (GFP-VASP) fluorescence at the leading edge into discrete foci. The GFP-VASP foci were associated with Lambda-precursors, whereas Arp2/3 was not. Subsequent recruitment of fascin to the clustered barbed ends of Lambda-precursors initiated filament bundling and completed formation of the nascent filopodium. We propose a convergent elongation model of filopodia initiation, stipulating that filaments within the lamellipodial dendritic network acquire privileged status by binding a set of molecules (including VASP) to their barbed ends, which protect them from capping and mediate association of barbed ends with each other.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular/fisiología , Dendritas/metabolismo , Células Eucariotas/metabolismo , Seudópodos/metabolismo , Citoesqueleto de Actina/ultraestructura , Proteína 2 Relacionada con la Actina , Animales , Sitios de Unión/fisiología , Moléculas de Adhesión Celular/metabolismo , Tamaño de la Célula/fisiología , Proteínas del Citoesqueleto/metabolismo , Dendritas/ultraestructura , Células Eucariotas/ultraestructura , Proteínas Fluorescentes Verdes , Cinética , Proteínas Luminiscentes , Ratones , Proteínas de Microfilamentos , Microscopía Electrónica , Estructura Molecular , Fosfoproteínas/metabolismo , Seudópodos/ultraestructura , Proteínas Recombinantes de Fusión , Células Tumorales Cultivadas
15.
J Cell Biol ; 159(3): 441-52, 2002 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-12417576

RESUMEN

To track the behavior of human immunodeficiency virus (HIV)-1 in the cytoplasm of infected cells, we have tagged virions by incorporation of HIV Vpr fused to the GFP. Observation of the GFP-labeled particles in living cells revealed that they moved in curvilinear paths in the cytoplasm and accumulated in the perinuclear region, often near the microtubule-organizing center. Further studies show that HIV uses cytoplasmic dynein and the microtubule network to migrate toward the nucleus. By combining GFP fused to the NH2 terminus of HIV-1 Vpr tagging with other labeling techniques, it was possible to determine the state of progression of individual particles through the viral life cycle. Correlation of immunofluorescent and electron micrographs allowed high resolution imaging of microtubule-associated structures that are proposed to be reverse transcription complexes. Based on these observations, we propose that HIV uses dynein and the microtubule network to facilitate the delivery of the viral genome to the nucleus of the cell during early postentry steps of the HIV life cycle.


Asunto(s)
Transporte Biológico/fisiología , Núcleo Celular/virología , Citoplasma/virología , Productos del Gen vpr/metabolismo , VIH-1/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Virión/fisiología , Antígenos CD4/metabolismo , Línea Celular , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/virología , Dineínas/metabolismo , Colorantes Fluorescentes/metabolismo , Productos del Gen gag/metabolismo , Productos del Gen vpr/genética , Proteínas Fluorescentes Verdes , Proteína p24 del Núcleo del VIH/metabolismo , Humanos , Indicadores y Reactivos/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Sustancias Macromoleculares , Microscopía Fluorescente , Microscopía por Video , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Proteínas Recombinantes de Fusión/genética , Factores de Tiempo , Transcripción Genética , Virión/genética , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA