Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Protein Sci ; 28(2): 305-312, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30345641

RESUMEN

Heterotrimeric G-proteins are cellular signal transducers. They mainly relay signals from G-protein-coupled receptors (GPCRs). GPCRs function as guanine nucleotide-exchange factors to active these G-proteins. Based on the sequence and functional similarities, these G-proteins are grouped into four subfamilies: Gs , Gi , Gq , and G12/13 . The G12/13 subfamily consists of two members: G12 and G13 . G12/13 -mediated signaling pathways play pivotal roles in a variety of physiological processes, while aberrant regulation of this pathway has been identified in various human diseases. Here we summarize the signaling mechanisms and physiological functions of Gα13 in blood vessel formation and bone homeostasis. We further discuss the expanding roles of Gα13 in cancers, serving as oncogenes as well as tumor suppressors.


Asunto(s)
Huesos/enzimología , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Neoplasias/enzimología , Neovascularización Patológica , Proteínas Oncogénicas/metabolismo , Transducción de Señal , Animales , Humanos
2.
J Mol Biol ; 429(24): 3836-3849, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29079481

RESUMEN

Heterotrimeric G-proteins are essential cellular signal transducers. One of the G-proteins, Gα13, is critical for actin cytoskeletal reorganization, cell migration, cell proliferation, and apoptosis. Previously, we have shown that Gα13 is essential for both G-protein-coupled receptor and receptor tyrosine kinase-induced actin cytoskeletal reorganization such as dynamic dorsal ruffle turnover and cell migration. However, the mechanism by which Gα13 signals to actin cytoskeletal reorganization is not completely understood. Here we show that Gα13 directly interacts with Abl tyrosine kinase, which is a critical regulator of actin cytoskeleton. This interaction is critical for Gα13-induced dorsal ruffle turnover, endothelial cell remodeling, and cell migration. Our data uncover a new molecular signaling pathway by which Gα13 controls actin cytoskeletal reorganization.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular/fisiología , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Proteínas Oncogénicas v-abl/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Ratones , Ratones Noqueados , Proteínas Oncogénicas v-abl/genética , Transducción de Señal , Esferoides Celulares , Cicatrización de Heridas
3.
Nat Commun ; 8: 15286, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28513584

RESUMEN

Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors.


Asunto(s)
Segregación Cromosómica/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/fisiología , Mitosis/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/fisiología , Simulación por Computador , Dineínas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Modelos Biológicos , Método de Montecarlo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/metabolismo
4.
Nat Commun ; 6: 7322, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26031557

RESUMEN

Aneuploidy-chromosome instability leading to incorrect chromosome number in dividing cells-can arise from defects in centrosome duplication, bipolar spindle formation, kinetochore-microtubule attachment, chromatid cohesion, mitotic checkpoint monitoring or cytokinesis. As most tumours show some degree of aneuploidy, mechanistic understanding of these pathways has been an intense area of research, to provide potential therapeutics. Here we present a mechanism for aneuploidy in fission yeast based on spindle pole microtubule defocusing by loss of kinesin-14 Pkl1, leading to kinesin-5 Cut7-dependent aberrant long spindle microtubule minus-end protrusions that push the properly segregated chromosomes to the site of cell division, resulting in chromosome cut at cytokinesis. Pkl1 localization and function at the spindle pole is mutually dependent on spindle pole-associated protein Msd1. This mechanism of aneuploidy bypasses the known spindle assembly checkpoint that monitors chromosome segregation.


Asunto(s)
Aneuploidia , Inestabilidad Cromosómica , Cromosomas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Polos del Huso/metabolismo , Segregación Cromosómica , Schizosaccharomyces , Huso Acromático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA